Transformers
PyTorch
wav2vec2
pretraining
speech
xls_r
xls_r_pretrained
Inference Endpoints
File size: 3,735 Bytes
807857f
4907964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807857f
 
e3fff1f
807857f
 
59c08a6
e842f37
807857f
 
0020b69
e51a08e
807857f
618f1bb
807857f
20eccef
 
06ba4de
 
c5e86b9
807857f
dfeb77c
807857f
b669df6
807857f
 
b669df6
807857f
 
 
 
 
06ba4de
807857f
1c66a96
618f1bb
1c66a96
 
618f1bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
language: 
- multilingual
- ab
- af
- sq
- am
- ar
- hy
- as
- az
- ba
- eu
- be
- bn
- bs
- br
- bg
- my
- yue
- ca
- ceb
- km
- zh
- cv
- hr
- cs
- da
- dv
- nl
- en
- eo
- et
- fo
- fi 
- fr
- gl
- lg
- ka
- de
- el
- gn
- gu
- ht
- cnh
- ha
- haw
- he
- hi
- hu
- is
- id
- ia
- ga
- it
- ja
- jv
- kb
- kn
- kk
- rw
- ky
- ko
- ku
- lo
- la
- lv
- ln
- lt
- lm
- mk
- mg
- ms
- ml
- mt
- gv
- mi
- mr
- mn
- ne
- no
- nn
- oc
- or
- ps
- fa
- pl
- pt
- pa
- ro
- rm
- rm
- ru
- sah 
- sa
- sco
- sr
- sn
- sd
- si
- sk
- sl
- so
- hsb
- es
- su
- sw
- sv
- tl 
- tg
- ta
- tt
- te
- th
- bo
- tp
- tr
- tk 
- uk 
- ur 
- uz 
- vi
- vot 
- war
- cy
- yi
- yo
- zu
language_bcp47:
- zh-HK 
- zh-TW
- fy-NL
datasets:
- common_voice
- multilingual_librispeech
tags:
- speech
- xls_r
- xls_r_pretrained
license: apache-2.0
---

# Wav2Vec2-XLS-R-300M

[Facebook's Wav2Vec2 XLS-R](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) counting **300 million** parameters.

![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xls_r.png)

XLS-R is Facebook AI's large-scale multilingual pretrained model for speech (the "XLM-R for Speech"). It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. When using the model make sure that your speech input is sampled at 16kHz. 

**Note**: This model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Translation, or Classification. Check out [**this blog**](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information about ASR.

[XLS-R Paper](https://arxiv.org/abs/2111.09296)

Authors: Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli

**Abstract**
This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on 436K hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 20%-33% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world.

The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.

# Usage

See [this google colab](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLS_R_on_Common_Voice.ipynb) for more information on how to fine-tune the model.

You can find other pretrained XLS-R models with different numbers of parameters:

* [300M parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-300m)
* [1B version version](https://huggingface.co/facebook/wav2vec2-xls-r-1b)
* [2B version version](https://huggingface.co/facebook/wav2vec2-xls-r-2b)