Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: multilingual
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- translation
|
6 |
+
- wmt21
|
7 |
+
---
|
8 |
+
# WMT 21 X-En
|
9 |
+
WMT 21 X-En is a 4.7B multilingual encoder-decoder (seq-to-seq) model trained for one-to-many multilingual translation.
|
10 |
+
It was introduced in this [paper](https://arxiv.org/abs/2108.03265) and first released in [this](https://github.com/pytorch/fairseq/tree/main/examples/wmt21) repository.
|
11 |
+
|
12 |
+
The model can directly translate text from 7 languages: Hausa (ha), Icelandic (is), Japanese (ja), Czech (cs), Russian (ru), Chinese (zh), German (de) to English.
|
13 |
+
|
14 |
+
To translate into a target language, the target language id is forced as the first generated token.
|
15 |
+
To force the target language id as the first generated token, pass the `forced_bos_token_id` parameter to the `generate` method.
|
16 |
+
|
17 |
+
*Note: `M2M100Tokenizer` depends on `sentencepiece`, so make sure to install it before running the example.*
|
18 |
+
To install `sentencepiece` run `pip install sentencepiece`
|
19 |
+
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoModelForConditionalGeneration, AutoTokenizer
|
23 |
+
|
24 |
+
model = AutoModelForConditionalGeneration.from_pretrained("facebook/wmt21-dense-24-wide-x-en")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/wmt21-dense-24-wide-x-en")
|
26 |
+
|
27 |
+
# translate German to English
|
28 |
+
tokenizer.src_lang = "de
|
29 |
+
inputs = tokenizer("Ein Modell für viele Sprachen", return_tensors="pt")
|
30 |
+
generated_tokens = model.generate(**inputs)
|
31 |
+
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
32 |
+
# => "A model for many languages"
|
33 |
+
|
34 |
+
# translate Icelandic to English
|
35 |
+
tokenizer.src_lang = "is"
|
36 |
+
inputs = tokenizer("Ein fyrirmynd fyrir mörg tungumál", return_tensors="pt")
|
37 |
+
generated_tokens = model.generate(**inputs)
|
38 |
+
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
39 |
+
# => "One model for many languages"
|
40 |
+
```
|
41 |
+
|
42 |
+
See the [model hub](https://huggingface.co/models?filter=wmt21) to look for more fine-tuned versions.
|
43 |
+
|
44 |
+
|
45 |
+
## Languages covered
|
46 |
+
English (en), Hausa (ha), Icelandic (is), Japanese (ja), Czech (cs), Russian (ru), Chinese (zh), German (de)
|
47 |
+
|
48 |
+
|
49 |
+
## BibTeX entry and citation info
|
50 |
+
```
|
51 |
+
@inproceedings{tran2021facebook
|
52 |
+
title={Facebook AI’s WMT21 News Translation Task Submission},
|
53 |
+
author={Chau Tran and Shruti Bhosale and James Cross and Philipp Koehn and Sergey Edunov and Angela Fan},
|
54 |
+
booktitle={Proc. of WMT},
|
55 |
+
year={2021},
|
56 |
+
}
|
57 |
+
```
|