File size: 1,984 Bytes
3e5c93e 6c26f20 3e5c93e 6c26f20 a642b9a 3e5c93e a642b9a 0a57e11 267862e 3e5c93e 2c107e8 0a57e11 3e5c93e a642b9a 3e5c93e a642b9a 3e5c93e 6c26f20 3e5c93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: mit
base_model: fahadqazi/Sindhi-TTS
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sindhi-TTS
This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2937
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.3182 | 2.5409 | 100 | 0.3032 |
| 0.3142 | 5.0943 | 200 | 0.3041 |
| 0.3171 | 7.6352 | 300 | 0.3021 |
| 0.3132 | 10.1887 | 400 | 0.2994 |
| 0.3105 | 12.7296 | 500 | 0.2982 |
| 0.3084 | 15.2830 | 600 | 0.2971 |
| 0.3081 | 17.8239 | 700 | 0.2973 |
| 0.3085 | 20.3774 | 800 | 0.2954 |
| 0.3033 | 22.9182 | 900 | 0.2943 |
| 0.3079 | 25.4717 | 1000 | 0.2937 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|