File size: 1,984 Bytes
3e5c93e
 
 
6c26f20
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
6c26f20
a642b9a
 
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a642b9a
0a57e11
267862e
3e5c93e
2c107e8
0a57e11
3e5c93e
 
 
a642b9a
3e5c93e
 
a642b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5c93e
 
 
6c26f20
3e5c93e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: fahadqazi/Sindhi-TTS
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Sindhi-TTS

This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2937

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.3182        | 2.5409  | 100  | 0.3032          |
| 0.3142        | 5.0943  | 200  | 0.3041          |
| 0.3171        | 7.6352  | 300  | 0.3021          |
| 0.3132        | 10.1887 | 400  | 0.2994          |
| 0.3105        | 12.7296 | 500  | 0.2982          |
| 0.3084        | 15.2830 | 600  | 0.2971          |
| 0.3081        | 17.8239 | 700  | 0.2973          |
| 0.3085        | 20.3774 | 800  | 0.2954          |
| 0.3033        | 22.9182 | 900  | 0.2943          |
| 0.3079        | 25.4717 | 1000 | 0.2937          |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3