--- language: - es license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Es - Spanish Sampler results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: es split: test args: es metrics: - name: Wer type: wer value: 11.316615023383822 --- # Whisper Small Es - Spanish Sampler This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.2701 - Wer Ortho: 16.7756 - Wer: 11.3166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.241 | 0.03 | 500 | 0.2701 | 16.7756 | 11.3166 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2