{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=", "__module__": "sb3_contrib.tqc.policies", "__annotations__": "{'actor': <class 'sb3_contrib.tqc.policies.Actor'>, 'critic': <class 'sb3_contrib.tqc.policies.Critic'>, 'critic_target': <class 'sb3_contrib.tqc.policies.Critic'>}", "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function TQCPolicy.__init__ at 0x7f47be487f60>", "_build": "<function TQCPolicy._build at 0x7f47be4b0040>", "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f47be4b00e0>", "reset_noise": "<function TQCPolicy.reset_noise at 0x7f47be4b0180>", "make_actor": "<function TQCPolicy.make_actor at 0x7f47be4b0220>", "make_critic": "<function TQCPolicy.make_critic at 0x7f47be4b02c0>", "forward": "<function TQCPolicy.forward at 0x7f47be4b0360>", "_predict": "<function TQCPolicy._predict at 0x7f47be4b0400>", "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f47be4b04a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f47be491f00>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 23245000, "_total_timesteps": 25000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1734821019790192835, "learning_rate": 0.0003, "tensorboard_log": "runs/0", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVHQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaoAgAAAAAAAGN8IGsUZ6W/okv1fcjPiT/1P20t03jXvxHnkv0HL+y/xJFLiRUO2L+uMMcqDErcP8Wgxdnv/+E/cmTQxzcK2T8EuCQw2bsxQAbPqTE5FPU/C1sqi8CT9b9YdyvmYXkfQBgo/JDxDxBAhCjwmE3O6L8nG8JA5CMpwM1GhjzQjS3AB0TVXzO/GsBa3vYZm1m/v6Q5iXmBSnI/4VKlPA5D6D84WYUW7HjjP9O0vfZ/KOA/aBYc3pCZ8b9iSVn3Jhzkv0NsgzuyaOC/+AEMuUuZMkA2w/s0URfxv5Y0QP1iTvy/SNmbcBpALkAm9+MC7uggQK6BmQKDTfk/M4x59GKqC0D0GZChdnsiwBURtMdS0hXAHlADEAFhsL9PrY6jw3yzPzA4Y/N0qZe/XczhyEF82j+MFN+IxyPCvwaHG4nUUdA/Ml5NrRMb1z9UtRabXx3CPzB9l0jZ/jFA+h0Y3H1F7j/0w29xBjTzP79ofr7IyjXAsQ9BvHvlH8BZWfJ9DeExwItEfrGtUDJAoY/vJSTXIUCrSk7/ZlIqQNsHsZ/k372/f2eeD/7ai79O3hhD+iLoP86qSinLPOU/tTZeuNOv4z/Ke3TmJDfxv3/hNPqIwOK/8KApYy3Gxr+ht4XNKY4yQBI0Q7iHgO+/ndtmY5UJ8b/9u1nzxyMwQJZxFgQMLBhARFaCXlSRGECf8h8GgeMDQMUsmoc0Lh3APsA5mfgHKsADecjovSuvvwoXZcP78n+/qnCUuPyy3L8UrrgxQafnv9GfybHmu9q/WgMqderHxz8i0sbtBarYP/IEuXbmuuE/euxx0OKAJ0Ci5EdyquXAP0ahhs3oCvK/7XsH1Qe9FUAoXYQwiZMVQOi+GLA45YW/LIQ6d0I+GMAPo4Xr6JUtwHG65WuM+BpAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSxGGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVHQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaoAgAAAAAAALVCp6+Q97S/OC5z4GpDtT/fmr+TnsHiv+aZLExrkei/SduRKtCh2r/vN5yuVK/qP6I9cNu+Pu8/SR52aygY4D9wifOgMQ0xQAyRsEBpRd+/wJj5WYpexj/QcW+Eg1HjP59nANdzbjvAqUFjnsg6BUDAL3Q1GSLjv4C14ZZCnDJAFiZe6CAoE0Am901110Gmv9p/ajC+O5c/1Kqo8Lzlk79gWr2u2aevv+dfRepH284/FODY98cG378MMZYcMRTFv1If3fnWy7+/6z1/lsn7MUDagvFSgYzhv5lPmuCHOvU/D16Jj3BtI0Ag7ujrk0ozQOpiomBXKydAtDuM7l8BN8Dgkb/C/gAowDl0e3HTNSbAbdQN1dCqu79UWykuxeGsv2SD5NszRvA/RIl4ArXq4z+sVWDm5mHmP6vP+I6yctq/Qdijc/4b27+zpNh+/t3dv+gW29bgpjJA5yFRn/T+5T+Q8+14iom+P3X2gty6ggzAhLFLbA6PCsDWX9NJQYERwCEUkzjIkC9A09b3XGzWJ0CdfV6KhSILQJgvtwWOHKe/evX2tqn6lL8KZiTedZOwv1yl/YhLwKE/vAyQkmGbyj/GNo28yWHbv1fTFZWqeM2/Vu9Pe8rQ1j9no2Arc+wxQINzpGz3vd+/40rvHq/R8D/Ej1dHGgoiQKm9OOu8nTZAYjePKFJFIUD63NUw3J02wBrh+FhGPCbA34qTPZGFEcDAl2b3jPOtv08ZBjD9bLM/lXWdidd/5L+ERvNDDMzqv/TH60sWK9u/nO+bL9l20z9P2o3mNo7oP5BzN9jBQNE/+NylnHc6JkAZrsdb+kflvzEoECxMEfW/4Ok4+tc80b+gjPjI5ik5wGwI0i9ixPY/RkYVM0a66T+PR8p8YlUhQHizBk9Nfu0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSxGGlIwBQ5R0lFKULg=="}, "_episode_num": 23240, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.07020020000000005, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQM/RPIgNgBuMAWyUTegDjAF0lEdBBerVNF2FFnV9lChoBkdAz5IGNYKYzGgHTegDaAhHQQXq1S3kxRF1fZQoaAZHQM9BJM1CPZJoB03oA2gIR0EF6tUo6jnFdX2UKGgGR0DP4UGk+HJtaAdN6ANoCEdBBerVI/eLvXV9lChoBkdAz8eHhQWN3mgHTegDaAhHQQXq1R863iJ1fZQoaAZHQM/Eygw482doB03oA2gIR0EF7hXvRiPRdX2UKGgGR0DQE8O8qWkaaAdN6ANoCEdBBe4V6Q3gk3V9lChoBkdAz75ckdmxuGgHTegDaAhHQQXuFeRHPNV1fZQoaAZHQNACgOfmLcdoB03oA2gIR0EF7hXfhl19dX2UKGgGR0DPl1aWeHzpaAdN6ANoCEdBBe4V2vjfenV9lChoBkdAzugFg4Otn2gHTegDaAhHQQXwaScGTs91fZQoaAZHQNAPOU/fO2RoB03oA2gIR0EF8GkhCdBjdX2UKGgGR0DOHEHO+qR2aAdN6ANoCEdBBfBpHB7/oHV9lChoBkdAz9OPyvs7dWgHTegDaAhHQQXwaRc1wYN1fZQoaAZHQM/9plAu7H1oB03oA2gIR0EF8GkSbpeNdX2UKGgGR0DP6jRcTrVwaAdN6ANoCEdBBfMfFbqyGHV9lChoBkdA0Ap3ZBcAzmgHTegDaAhHQQXzHw9SMtN1fZQoaAZHQM+nEWhh6SloB03oA2gIR0EF8x8KdYnwdX2UKGgGR0DP7ZoHoouxaAdN6ANoCEdBBfMfBZZB9nV9lChoBkdA0AugxcmjTWgHTegDaAhHQQXzHwDcuap1fZQoaAZHQM/rLpPAO8VoB03oA2gIR0EF9mXVEmY0dX2UKGgGR0DQA1h6v7m/aAdN6ANoCEdBBfZlzwUg0XV9lChoBkdAwdPxsj3VTmgHTegDaAhHQQX2ZcqZtvZ1fZQoaAZHQM/p/jc2zfJoB03oA2gIR0EF9mXGICU5dX2UKGgGR0DP24/IQvpRaAdN6ANoCEdBBfZlwckt3HV9lChoBkdAzlGs5I6KcmgHTegDaAhHQQX5H+hX8wZ1fZQoaAZHQM/05kA5q/NoB03oA2gIR0EF+R/h3A2ydX2UKGgGR0DP4gi7mMfjaAdN6ANoCEdBBfkf3Ov+wXV9lChoBkdAz0wKTj/+9GgHTegDaAhHQQX5H9gtOEd1fZQoaAZHQM896v/rB0poB03oA2gIR0EF+R/Tho/SdX2UKGgGR0DPgeuvfTCtaAdN6ANoCEdBBftAkuUUwnV9lChoBkdA0A4STbnHN2gHTegDaAhHQQX7QIxzJZJ1fZQoaAZHQM/Q2ZaFEiNoB03oA2gIR0EF+0CHd43WdX2UKGgGR0DPvmImXw9aaAdN6ANoCEdBBftAgpF1CHV9lChoBkdA0BQk6RyOrGgHTegDaAhHQQX7QH3r2QJ1fZQoaAZHQM+IRfHYHxBoB03oA2gIR0EF/Zrb+cYqdX2UKGgGR0DPn3gR28qXaAdN6ANoCEdBBf2a1YSxq3V9lChoBkdAz+v5J/5Ly2gHTegDaAhHQQX9mtCJoCd1fZQoaAZHQM/ezGGmDUVoB03oA2gIR0EF/ZrLqMWHdX2UKGgGR0DP0cIB5ooNaAdN6ANoCEdBBf2axvP1MHV9lChoBkdA0A0dZpztC2gHTegDaAhHQQX/8G3hn8N1fZQoaAZHQM+VHwtjCpFoB03oA2gIR0EF//Bo+OfedX2UKGgGR0DP4aRYcNpeaAdN6ANoCEdBBf/wZI8QqnV9lChoBkdAz+NSm3vx6WgHTegDaAhHQQX/8F/wy7B1fZQoaAZHQM/MM2q1gIBoB03oA2gIR0EF//BbfYSQdX2UKGgGR0DP9oCQ/5ckaAdN6ANoCEdBBgmnc3dbgXV9lChoBkdAz/MuqMFUymgHTegDaAhHQQYJp20LMLZ1fZQoaAZHQM/8RTjFQ2xoB03oA2gIR0EGCadoEr5JdX2UKGgGR0DP8ErSG8EnaAdN6ANoCEdBBgmnYyIpIHV9lChoBkdA0BH5Z5Rj0GgHTegDaAhHQQYJp15gw491fZQoaAZHQM/WDvm5lOJoB03oA2gIR0EGDFRrK/21dX2UKGgGR0DP4edvKlpHaAdN6ANoCEdBBgxUZKjBVXV9lChoBkdAz8JKCp3otGgHTegDaAhHQQYMVF+uNgl1fZQoaAZHQM/1jra24NJoB03oA2gIR0EGDFRau4gBdX2UKGgGR0DQAzz7JnxsaAdN6ANoCEdBBgxUViKBNHV9lChoBkdAz2tmV9nbqWgHTegDaAhHQQYOtf2FFlV1fZQoaAZHQNAL+od6syVoB03oA2gIR0EGDrX3TVlPdX2UKGgGR0DPasSnaWX1aAdN6ANoCEdBBg618jiXIHV9lChoBkdAphIxoh6jWWgHTegDaAhHQQYOte04zad1fZQoaAZHQM+gTgDaGpNoB03oA2gIR0EGDrXoZIhAdX2UKGgGR0DPkm7JKaodaAdN6ANoCEdBBhEoda4c3nV9lChoBkdAz+L/hwVCX2gHTegDaAhHQQYRKG9OARV1fZQoaAZHQM9tIJhvze5oB03oA2gIR0EGEShqagEmdX2UKGgGR0DP8BSFIuoQaAdN6ANoCEdBBhEoZYHPeHV9lChoBkdAz9KTcC5mRWgHTegDaAhHQQYRKGDA8CB1fZQoaAZHQM9m6PllsgxoB03oA2gIR0EGFK3QWFewdX2UKGgGR0DPbQvHNorXaAdN6ANoCEdBBhStyjvd/XV9lChoBkdAz+RfEJBw/GgHTegDaAhHQQYUrcWoFV11fZQoaAZHQM7yP+OfdyloB03oA2gIR0EGFK3BCtzTdX2UKGgGR0DPnGWp++dtaAdN6ANoCEdBBhStvKGL1nV9lChoBkdAz1slRNyo42gHTegDaAhHQQYXqwpQUHp1fZQoaAZHQM8rht9YwItoB03oA2gIR0EGF6sELYwqdX2UKGgGR0DP2tlWluWKaAdN6ANoCEdBBheq/4dp7HV9lChoBkdAz+qFIOH312gHTegDaAhHQQYXqvri2lV1fZQoaAZHQM/9fNGmUGFoB03oA2gIR0EGF6r2fseGdX2UKGgGR0DPGtrdepn6aAdN6ANoCEdBBhuYRhrnDHV9lChoBkdAz2xEUYbbUWgHTegDaAhHQQYbmD/n4fx1fZQoaAZHQM/I7ez2OABoB03oA2gIR0EGG5g7SJCTdX2UKGgGR0DPvSOpAD7qaAdN6ANoCEdBBhuYNoxpL3V9lChoBkdA0BsHQmu1W2gHTegDaAhHQQYbmDH3Del1fZQoaAZHQNAMa1a0QbxoB03oA2gIR0EGIf2kvK2bdX2UKGgGR0DP5WmOsDGMaAdN6ANoCEdBBiH9t8PWhHV9lChoBkdAz/TX3QD3d2gHTegDaAhHQQYh/bWilBR1fZQoaAZHQNAB5nFLnLdoB03oA2gIR0EGIf2y9M9KdX2UKGgGR0DQB3ILZzxPaAdN6ANoCEdBBiH9sjX4CnV9lChoBkdA0A/fWLgn+mgHTegDaAhHQQYlxwNlRP51fZQoaAZHQM6f/BQN0/5oB03oA2gIR0EGJcb9BSk1dX2UKGgGR0DPYicLH+6zaAdN6ANoCEdBBiXG+CEpRXV9lChoBkdA0Afy0U47zWgHTegDaAhHQQYlxvNC7bt1fZQoaAZHQNAZzkELYwtoB03oA2gIR0EGJcbujRD1dX2UKGgGR0DP9etGCqZMaAdN6ANoCEdBBi29YJ9iMHV9lChoBkdA0A+U9yLhrGgHTegDaAhHQQYtvVqkdmx1fZQoaAZHQM/wHY6nzhBoB03oA2gIR0EGLb1V4oqkdX2UKGgGR0DQAnExGlQ/aAdN6ANoCEdBBi29URlH0HV9lChoBkdAz+t6hakhzWgHTegDaAhHQQYtvUyGi6B1fZQoaAZHQM/ZILeQ+2VoB03oA2gIR0EGNIYzCLuQdX2UKGgGR0DPzkCsySFHaAdN6ANoCEdBBjSGLKoybnV9lChoBkdAz/6/mmtQsWgHTegDaAhHQQY0hifGMn91fZQoaAZHQM/3/gmReTpoB03oA2gIR0EGNIYi5uqFdX2UKGgGR0DNoqbAtWdVaAdN6ANoCEdBBjSGHjMmnnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4648979, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f47baedcd60>", "add": "<function ReplayBuffer.add at 0x7f47baedcea0>", "sample": "<function ReplayBuffer.sample at 0x7f47baedcf40>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f47baedcfe0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f47baedd080>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f47baed6c00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -6.0, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVsQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgLSxGFlIwBQ5R0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgWdJRSlIwEaGlnaJRoEyiWiAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgLSxGFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoHUsRhZRoFnSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [17], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVfgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgYAAAAAAAAAAQEBAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwaFlGgWdJRSlIwEaGlnaJRoEyiWGAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UaAtLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoHUsGhZRoFnSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "bounded_below": "[ True True True True True True]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_above": "[ True True True True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVRgQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMaC9ob21lL21hc3Rlci1hbmRyZWFzL2dlbl9kYXRhc2V0L3Rlc3RfZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6US2FDEPiAAKRlqU7QO03TLE7UJk+UQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGgvaG9tZS9tYXN0ZXItYW5kcmVhcy9nZW5fZGF0YXNldC90ZXN0X2Vudi9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBqMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUaAkpjAFflIWUaA6MBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuFQwj4gADYDxKICpRoEowDdmFslIWUKXSUUpRoF05OaB8pUpSFlHSUUpRoJWhBfZR9lChoGowEZnVuY5RoKYwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoK32UaC1OaC5OaC9oG2gwTmgxaDNHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhKXZRoTH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.125-1-MANJARO-x86_64-with-glibc2.40 # 1 SMP PREEMPT_DYNAMIC Fri Jan 17 15:04:03 UTC 2025", "Python": "3.12.8", "Stable-Baselines3": "2.4.1", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0"}} |