File size: 16,311 Bytes
a19abc9
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=", "__module__": "sb3_contrib.tqc.policies", "__annotations__": "{'actor': <class 'sb3_contrib.tqc.policies.Actor'>, 'critic': <class 'sb3_contrib.tqc.policies.Critic'>, 'critic_target': <class 'sb3_contrib.tqc.policies.Critic'>}", "__doc__": "\n    Policy class (with both actor and critic) for TQC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the feature extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_quantiles: Number of quantiles for the critic.\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ", "__init__": "<function TQCPolicy.__init__ at 0x7f28c2e93f60>", "_build": "<function TQCPolicy._build at 0x7f28c2ebc040>", "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f28c2ebc0e0>", "reset_noise": "<function TQCPolicy.reset_noise at 0x7f28c2ebc180>", "make_actor": "<function TQCPolicy.make_actor at 0x7f28c2ebc220>", "make_critic": "<function TQCPolicy.make_critic at 0x7f28c2ebc2c0>", "forward": "<function TQCPolicy.forward at 0x7f28c2ebc360>", "_predict": "<function TQCPolicy._predict at 0x7f28c2ebc400>", "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f28c2ebc4a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f28c2e9d640>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 21935000, "_total_timesteps": 25000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1734249229153512321, "learning_rate": 0.0003, "tensorboard_log": "runs/0", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVLQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJa4AQAAAAAAAEfxUk005vA/Y5bzVDBxkD8uqT+pcHnkvwLeop0tj+i/S0sYNV7F6b+4ZWvqul8XQEVQ/PF9H+u//2pEc/1dAUDyXJItrHzaP84FLDInzOC/vfGCWY1o5D8k5AnGpzL1P/6rBi2EOXm/+yEE2ETV4r8Y7MGeCU7Jv4cM5zrJueU/s7sJRJwmCED7ZrcG50nnv5evUCIal+G/n62coASX+b+0EnmhZj4KQF87TNQ+8R1A5T3Er7698z/DrV5N7yHIPylhr7mPV3c/G7Vb8rnJ1b/inISyNJvKvz7S3AyL8wdAdJ/kDymu5T8yHNKw+hrlv+LUyUgNUwBAqCQPnef+GsA5zFxG8KQgwJye2EnD/fU/F/mftP6Puz8Cpoe45l7Tv9YkqcnatI8/btP46yX55T8rDFsCsBwMQC3mtN8YbfW/CQiL1g5cBUB+5XndAVUOQEakIgKwUee/oKU/bGcaF8C5vKyvIKD3P+bJDmF/krm/nmh2zjDs3L8YGzMLvAzSv8nxvR1tIuk/CrxEEjcpD0Dp8j9aJE/yv8wNywIEONk/zFe3RmcBA8BC3/cQYEsYQAAAAAAAACRAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwuGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVLQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJa4AQAAAAAAAFfBXa2+//A/7jnmg+8JdL/jLukC5LTkv5zP3o+hbei/5S4TTGL16b9Cdx+wQNsXQJDQtnxou+a/PMSd1/uLCEDmtwPNFGz2P85SJ4JG8d+/sT/+ikyy6j/sT473H0n1P7u12P8y6ne/eV2c1v994r94POxmN0DNv2uAKu5RtuM/Lybh2LxzCUDBC50zAI7kvygO5o/XLN4/qR+umVAH8b9QHAUjd7QRQDJQi2NKfiBArwM7JICy8z8I+c1u4FXIP6o7pWZZnpG/UhvF1gsu0r8VBCtweMPBv7Tj510nzgdAiPny6fmRkL9YJKY6vvq8P1ffTh0abQxATEmPkcNkHcAntFlKuREiwDn3ZJJLKfY/5XnnFa7Wtj/HwAC5zPvUv58ohZKsrpI/4Xws+u1L5z82ionZkB4MQMn75oaWGvW/b2UBuocQ/z/x/yLvkQ8EQIBc3y4VI6Q/k38kWzY/EsA174igaMX3P+Osl/moibm/h6Yxn4J627/lxzSKkg7Vv4ZKMgMKPeU/Dwpv0GyaDkDQcuyryujxv4KuvbLKJdu/ZHXBcnEhCsDZelHL+MAWQAAAAAAAACRAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksFSwuGlIwBQ5R0lFKULg=="}, "_episode_num": 46032, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.12260020000000005, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOjph/iHZeMAWyUTSgBjAF0lEdBD1+XWGZeA3V9lChoBkdAb8EEGqxTsWgHS2JoCEdBD1+ms/Spi3V9lChoBkdAhx5ujqOcUmgHS9ZoCEdBD2AJXTkQw3V9lChoBkdApjH7Wwu/UWgHTYMCaAhHQQ9gG7UfgaZ1fZQoaAZHQKDlBxgiNbVoB03vAWgIR0EPYB5kSM99dX2UKGgGR0ChiaNUOuq4aAdN+gFoCEdBD2Ak2fh/AnV9lChoBkdAmRn9yxRl6WgHTXoBaAhHQQ9gO1Sde6Z1fZQoaAZHQIc3Sxu89OhoB0vWaAhHQQ9gSelKK511fZQoaAZHQJjsi8Djin5oB016AWgIR0EPYGQAHNX6dX2UKGgGR0CcM54z7/GVaAdNrwFoCEdBD2CiN2mpEXV9lChoBkdAlCPaynk1dmgHTTYBaAhHQQ9gqc/iYLN1fZQoaAZHQJMVQ6gdwNtoB00oAWgIR0EPYLnNe+mFdX2UKGgGR0Cf1mTisGPgaAdN0gFoCEdBD2C6Yr4FinV9lChoBkdAkgRmOlwcYWgHTREBaAhHQQ9g1Te0G/x1fZQoaAZHQJJVAl7dBSloB00UAWgIR0EPYRC9NWU9dX2UKGgGR0CS/5ZjQRf4aAdNIQFoCEdBD2EyMOTaCnV9lChoBkdAkugp5iVjZ2gHTRwBaAhHQQ9hSDpRoAZ1fZQoaAZHQJeyajN6gNBoB01dAWgIR0EPYUh2fChwdX2UKGgGR0Cb1z+2mYShaAdNlgFoCEdBD2Geoxi5NHV9lChoBkdAlh0O7UXpGGgHTUoBaAhHQQ9hxBjfek51fZQoaAZHQJPOZhx5s0poB00qAWgIR0EPYc78CgbqdX2UKGgGR0CUPP75Ec81aAdNMwFoCEdBD2He8PhAGHV9lChoBkdAnMamnsLORmgHTaQBaAhHQQ9h8qTsY2t1fZQoaAZHQJ4Hx7Z39rJoB022AWgIR0EPYfZweV9ndX2UKGgGR0Cg8ToBq9GraAdN6wFoCEdBD2IqcKVpsXV9lChoBkdAnrEaoIfKZGgHTb4BaAhHQQ9iK0wrUb11fZQoaAZHQJ1EZkZrHlxoB02zAWgIR0EPYjlzI/7jdX2UKGgGR0CXr+fxc3VDaAdNYAFoCEdBD2JAhl8PWnV9lChoBkdAnfE3GCI1tWgHTbYBaAhHQQ9iTvJo0yh1fZQoaAZHQJaZTUNKAaxoB01NAWgIR0EPYszxR/EwdX2UKGgGR0CUHw6Vt4zKaAdNMwFoCEdBD2Leb06HTXV9lChoBkdAl5HQEIPbwmgHTVoBaAhHQQ9i3zEpAlh1fZQoaAZHQJQtQbCJoCdoB00wAWgIR0EPYuwWjXWfdX2UKGgGR0Ch8e71RLsbaAdNBwJoCEdBD2L1C5oXbnV9lChoBkdAkw4kHt4RmWgHTSEBaAhHQQ9jGggmJFd1fZQoaAZHQJrBZ4GD+R5oB02HAWgIR0EPYy+krXlKdX2UKGgGR0CcQaRjSXt0aAdNtAFoCEdBD2NGk3Mpw3V9lChoBkdAnTooqwyIpGgHTawBaAhHQQ9jTdGEwnJ1fZQoaAZHQKjg/V81Gb1oB03oAmgIR0EPY2eyh8IBdX2UKGgGR0CcPweVs1sMaAdNmQFoCEdBD2NvdS4vvnV9lChoBkdAkZxs3++/QGgHTQ0BaAhHQQ9jhnmrbQF1fZQoaAZHQJ/d3BciW3VoB03PAWgIR0EPY5FvPcBVdX2UKGgGR0CamywT/Q0GaAdNkQFoCEdBD2OZ+gL7XXV9lChoBkdAkh/4uK4x12gHTRIBaAhHQQ9j0Uxjawl1fZQoaAZHQJOlpQN0/4ZoB00iAWgIR0EPY9tjsD4hdX2UKGgGR0CQHwoQFs55aAdNGAFoCEdBD2P6sf1YhnV9lChoBkdAm7FZokAxSGgHTZQBaAhHQQ9kCo+eOGV1fZQoaAZHQHfKEDhcZ+BoB0uBaAhHQQ9kJsM+eOJ1fZQoaAZHQJ+rKMju8btoB03SAWgIR0EPZDP9dVvNdX2UKGgGR0Cd8a03fhuPaAdNsAFoCEdBD2Q6TF85S3V9lChoBkdAkoWpiZv1lGgHTSsBaAhHQQ9kPswTM7l1fZQoaAZHQKy1Vg1m8NBoB01TA2gIR0EPZIlS7Xg+dX2UKGgGR0ChF48neBQOaAdN7QFoCEdBD2SaxcxCY3V9lChoBkdAoQ+t4JNTLmgHTeoBaAhHQQ9lM3AVwgl1fZQoaAZHQKKUarMkhRtoB00ZAmgIR0EPZTXnLA58dX2UKGgGR0CUoRU9pyp8aAdNNgFoCEdBD2Vj4tBfKXV9lChoBkdAn8FqiCaqj2gHTcsBaAhHQQ9lc94dIXl1fZQoaAZHQJjwTNnoPkJoB01tAWgIR0EPZYjV27nQdX2UKGgGR0Ccy8omXw9aaAdNoAFoCEdBD2WQpaHKwXV9lChoBkdAsEfexdIGyGgHTegDaAhHQQ9loIDFId51fZQoaAZHQJlM+ZZ0SytoB01zAWgIR0EPZbPTrVvudX2UKGgGR0CT3kgl4TsZaAdNMgFoCEdBD2W0zs8gZHV9lChoBkdAn42htYSxq2gHTcoBaAhHQQ9l6VqREF51fZQoaAZHQJb37cXWOIZoB01RAWgIR0EPZfyCNKh+dX2UKGgGR0Chw+Qfp2U0aAdN/AFoCEdBD2X8125hB3V9lChoBkdAnre9Htnf22gHTb8BaAhHQQ9mACIgNgB1fZQoaAZHQJh9daiblRxoB01rAWgIR0EPZgKmgBcSdX2UKGgGR0CWlH/yXlbNaAdNSgFoCEdBD2aB80tRN3V9lChoBkdAmAbTxsl9jWgHTV4BaAhHQQ9mhZsqJ/J1fZQoaAZHQKFEQrrgOz9oB00nAmgIR0EPZp2z6SDAdX2UKGgGR0Cgz56GpMpPaAdN5gFoCEdBD2alk0rK/3V9lChoBkdAqWfPYL9deWgHTd8CaAhHQQ9m3HEETxp1fZQoaAZHQKBpu0TlDF9oB03eAWgIR0EPZun+ws5GdX2UKGgGR0CZhGdIGyHEaAdNdQFoCEdBD2brvf8/EHV9lChoBkdAocHDpPhybWgHTQACaAhHQQ9m7RgjQiR1fZQoaAZHQJC0vQokRjBoB00bAWgIR0EPZ4FUfHPvdX2UKGgGR0ClcJCml67eaAdNawJoCEdBD2eFIqEvkHV9lChoBkdAlKUwiRnvlWgHTT0BaAhHQQ9nkJMAWBV1fZQoaAZHQJ2W8tEofCBoB03QAWgIR0EPZ68j1GsndX2UKGgGR0CfFVc2R7qqaAdNxAFoCEdBD2fEmYUnHHV9lChoBkdAmICM6ij+JmgHTWQBaAhHQQ9oBFDsMRZ1fZQoaAZHQJmD/v8ZUDNoB012AWgIR0EPaBRDaoMsdX2UKGgGR0CXUM7ojfNzaAdNVgFoCEdBD2glgLiMpHV9lChoBkdAmntkvCdjG2gHTYUBaAhHQQ9oVWeDFqB1fZQoaAZHQKkDqTRIBiloB03OAmgIR0EPaJji/oJRdX2UKGgGR0CZCf1b7j1gaAdNawFoCEdBD2i1NUdaMnV9lChoBkdAoTTEdaMaTGgHTe0BaAhHQQ9o3Rf4yoJ1fZQoaAZHQKMTGGu9vjxoB00lAmgIR0EPaZpAzguRdX2UKGgGR0CfJvcXWOIZaAdNwgFoCEdBD2mfjm+0xHV9lChoBkdAnGTpA6dUbWgHTZ4BaAhHQQ9p0ourZJ11fZQoaAZHQJ6+X9WIXTFoB02+AWgIR0EPagv/Q0GedX2UKGgGR0CfclDohY/3aAdNxAFoCEdBD2o9ZDiOvXV9lChoBkdAmnXDWXkYGmgHTX0BaAhHQQ9qaWQEpy91fZQoaAZHQJyw+fYjB2xoB02jAWgIR0EPaoNwz1sddX2UKGgGR0CcdUcTakAQaAdNnQFoCEdBD2qitfkWAXV9lChoBkdAlXSu14Pf9GgHTUIBaAhHQQ9qo5dcjaB1fZQoaAZHQJGw7T2FnI1oB00KAWgIR0EPaqxFj/dZdX2UKGgGR0CZdBwLVnVYaAdNcQFoCEdBD2rd3okiU3V9lChoBkdAlx5pwXIlt2gHTVIBaAhHQQ9q48sK9f11fZQoaAZHQJQj09r433poB00sAWgIR0EPavXA/1QJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4386979, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ", "__init__": "<function ReplayBuffer.__init__ at 0x7f28bf94cd60>", "add": "<function ReplayBuffer.add at 0x7f28bf94cea0>", "sample": "<function ReplayBuffer.sample at 0x7f28bf94cf40>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f28bf94cfe0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f28bf94d080>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f28bf945d80>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -3.0, "ent_coef": "auto", "target_update_interval": 1, "top_quantiles_to_drop_per_net": 2, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgLSwuFlIwBQ5R0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgWdJRSlIwEaGlnaJRoEyiWWAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgLSwuFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoHUsLhZRoFnSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [11], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "bounded_below": "[False False False False False False False False False False False]", "high": "[inf inf inf inf inf inf inf inf inf inf inf]", "bounded_above": "[False False False False False False False False False False False]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgMAAAAAAAAAAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlGgWdJRSlIwEaGlnaJRoEyiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoHUsDhZRoFnSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "bounded_below": "[ True  True  True]", "high": "[1. 1. 1.]", "bounded_above": "[ True  True  True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVRgQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMaC9ob21lL21hc3Rlci1hbmRyZWFzL2dlbl9kYXRhc2V0L3Rlc3RfZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6US2FDEPiAAKRlqU7QO03TLE7UJk+UQwCUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGgvaG9tZS9tYXN0ZXItYW5kcmVhcy9nZW5fZGF0YXNldC90ZXN0X2Vudi9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBqMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUaAkpjAFflIWUaA6MBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuFQwj4gADYDxKICpRoEowDdmFslIWUKXSUUpRoF05OaB8pUpSFlHSUUpRoJWhBfZR9lChoGowEZnVuY5RoKYwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoK32UaC1OaC5OaC9oG2gwTmgxaDNHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhKXZRoTH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.125-1-MANJARO-x86_64-with-glibc2.40 # 1 SMP PREEMPT_DYNAMIC Fri Jan 17 15:04:03 UTC 2025", "Python": "3.12.8", "Stable-Baselines3": "2.4.1", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0"}}