farleyknight commited on
Commit
4eb4026
·
1 Parent(s): 2760e85

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -18
README.md CHANGED
@@ -1,11 +1,9 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - image-classification
5
- - vision
6
  - generated_from_trainer
7
  datasets:
8
- - imagefolder
9
  metrics:
10
  - accuracy
11
  model-index:
@@ -15,15 +13,15 @@ model-index:
15
  name: Image Classification
16
  type: image-classification
17
  dataset:
18
- name: farleyknight/roman_numerals
19
- type: imagefolder
20
- config: default
21
  split: train
22
- args: default
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.8308823529411765
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  # vit-base-mnist
33
 
34
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the farleyknight/roman_numerals dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.6891
37
- - Accuracy: 0.8309
38
 
39
  ## Model description
40
 
@@ -63,13 +61,13 @@ The following hyperparameters were used during training:
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 1.9053 | 1.0 | 289 | 1.3241 | 0.7108 |
69
- | 1.3293 | 2.0 | 578 | 0.9333 | 0.7892 |
70
- | 1.1251 | 3.0 | 867 | 0.7989 | 0.7843 |
71
- | 0.9837 | 4.0 | 1156 | 0.6956 | 0.8186 |
72
- | 0.999 | 5.0 | 1445 | 0.6891 | 0.8309 |
73
 
74
 
75
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
  tags:
 
 
4
  - generated_from_trainer
5
  datasets:
6
+ - mnist
7
  metrics:
8
  - accuracy
9
  model-index:
 
13
  name: Image Classification
14
  type: image-classification
15
  dataset:
16
+ name: mnist
17
+ type: mnist
18
+ config: mnist
19
  split: train
20
+ args: mnist
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.9948888888888889
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  # vit-base-mnist
31
 
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0236
35
+ - Accuracy: 0.9949
36
 
37
  ## Model description
38
 
 
61
 
62
  ### Training results
63
 
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
66
+ | 0.3717 | 1.0 | 6375 | 0.0522 | 0.9893 |
67
+ | 0.3453 | 2.0 | 12750 | 0.0370 | 0.9906 |
68
+ | 0.3736 | 3.0 | 19125 | 0.0308 | 0.9916 |
69
+ | 0.3224 | 4.0 | 25500 | 0.0269 | 0.9939 |
70
+ | 0.2846 | 5.0 | 31875 | 0.0236 | 0.9949 |
71
 
72
 
73
  ### Framework versions