File size: 1,580 Bytes
509154b c8e8269 509154b c8e8269 6c3e01f 509154b c8e8269 6c3e01f c8e8269 6c3e01f c8e8269 6c3e01f 509154b c8e8269 509154b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: mnist-digit-classification-2022-09-04
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: mnist
type: mnist
config: mnist
split: train
args: mnist
metrics:
- type: accuracy
value: 0.9923333333333333
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mnist-digit-classification-2022-09-04
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0319
- Accuracy: 0.9923
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1
|