File size: 3,050 Bytes
ad678ea 47a0baf ad678ea 47a0baf ad678ea 47a0baf ad678ea 47a0baf ad678ea 47a0baf ad678ea 47a0baf ad678ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- farleyknight/big_patent_5_percent
metrics:
- rouge
model-index:
- name: patent-summarization-allen-led-large-2022-09-20
results:
- task:
name: Summarization
type: summarization
dataset:
name: farleyknight/big_patent_5_percent
type: farleyknight/big_patent_5_percent
config: all
split: train
args: all
metrics:
- name: Rouge1
type: rouge
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# patent-summarization-allen-led-large-2022-09-20
This model is a fine-tuned version of [allenai/led-large-16384-arxiv](https://huggingface.co/allenai/led-large-16384-arxiv) on the farleyknight/big_patent_5_percent dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8233
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 128.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.4766 | 0.08 | 5000 | 3.4240 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 3.2549 | 0.17 | 10000 | 3.2908 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 3.2295 | 0.25 | 15000 | 3.1862 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 3.1455 | 0.33 | 20000 | 3.1291 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 3.0526 | 0.41 | 25000 | 3.0684 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 3.0024 | 0.5 | 30000 | 3.0134 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 2.9671 | 0.58 | 35000 | 2.9696 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 2.9862 | 0.66 | 40000 | 2.9431 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 2.9168 | 0.75 | 45000 | 2.8989 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 2.9063 | 0.83 | 50000 | 2.8559 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 2.8417 | 0.91 | 55000 | 2.8398 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
| 2.7853 | 0.99 | 60000 | 2.8240 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 |
### Framework versions
- Transformers 4.23.0.dev0
- Pytorch 1.12.0
- Datasets 2.4.0
- Tokenizers 0.12.1
|