--- license: mit --- # Ascites Segmentation with nnUNet ## Method 1: Run Inference using `nnunet_predict.py` 1. Install the latest version of [nnUNet](https://github.com/MIC-DKFZ/nnUNet#installation) and [PyTorch](https://pytorch.org/get-started/locally/). ```shell user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib ``` 2. Run inference with command: ```shell user@machine:~/ascites_segmentation$ python nnunet_predict.py -i file_list.txt -t TMP_DIR -o OUTPUT_FOLDER -m /path/to/nnunet/model_weights ``` ```shell usage: tmp.py [-h] [-i INPUT_LIST] -t TMP_FOLDER -o OUTPUT_FOLDER -m MODEL [-v] Inference using nnU-Net predict_from_folder Python API optional arguments: -h, --help show this help message and exit -i INPUT_LIST, --input_list INPUT_LIST Input image file_list.txt -t TMP_FOLDER, --tmp_folder TMP_FOLDER Temporary folder -o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER Output Segmentation folder -m MODEL, --model MODEL Trained Model -v, --verbose Verbose Output ``` N.B. - `model_weights` folder should contain `fold0`, `fold1`, etc... - WARNING: the program will try to create file links first, but will fallback to filecopy if fails ## Method 2: Run Inference using `nnUNet_predict` from shell 1. Install the latest version of [nnUNet](https://github.com/MIC-DKFZ/nnUNet#installation) and [PyTorch](https://pytorch.org/get-started/locally/). ```shell user@machine:~/ascites_segmentation$ pip install torch torchvision torchaudio nnunet matplotlib ``` 2. Place checkpoints in directory tree: ```shell user@machine:~/ascites_segmentation$ tree . . ├── nnUNet_preprocessed ├── nnUNet_raw_data_base └── nnUNet_trained_models └── nnUNet └── 3d_fullres └── Task505_TCGA-OV └── nnUNetTrainerV2__nnUNetPlansv2.1 ├── fold_0 │ ├── debug.json │ ├── model_final_checkpoint.model │ ├── model_final_checkpoint.model.pkl │ └── progress.png ├── fold_1 │ ├── debug.json │ ├── model_final_checkpoint.model │ ├── model_final_checkpoint.model.pkl │ └── progress.png ├── fold_2 │ ├── model_final_checkpoint.model │ ├── model_final_checkpoint.model.pkl │ └── progress.png ├── fold_3 │ ├── model_final_checkpoint.model │ ├── model_final_checkpoint.model.pkl │ └── progress.png ├── fold_4 │ ├── model_final_checkpoint.model │ ├── model_final_checkpoint.model.pkl │ └── progress.png └── plans.pkl ``` 3. Setup environment variables so that nnU-Net knows where to find trained models: ```shell user@machine:~/ascites_segmentation$ export nnUNet_raw_data_base="/absolute/path/to/nnUNet_raw_data_base" user@machine:~/ascites_segmentation$ export nnUNet_preprocessed="/absolute/path/to/nnUNet_preprocessed" user@machine:~/ascites_segmentation$ export RESULTS_FOLDER="/absolute/path/to/nnUNet_trained_models" ``` 4. Run inference with command: ```shell user@machine:~/ascites_segmentation$ nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 505 -m 3d_fullres -f N --save_npz ``` where: - `-i`: input folder of `.nii.gz` scans to predict. NB, filename needs to end with `_0000.nii.gz` to tell nnU-Net only one kind of modality - `-o`: output folder to store predicted segmentations, automatically created if not exist - `-t 505`: (do not change) Ascites pretrained model name - `-m 3d_fullres` (do not change) Ascites pretrained model name - `N`: Ascites pretrained model fold, can be `[0, 1, 2, 3, 4]` - `--save_npz`: save softmax scores, required for ensembling multiple folds ### Optional [Additional] Inference Steps a. use `nnUNet_find_best_configuration` to automatically get the inference commands needed to run the trained model on data. b. ensemble predictions using `nnUNet_ensemble` by running: ```shell user@machine:~/ascites_segmentation$ nnUNet_ensemble -f FOLDER1 FOLDER2 ... -o OUTPUT_FOLDER -pp POSTPROCESSING_FILE ``` where `FOLDER1` and `FOLDER2` are predicted outputs by nnUNet (requires `--save_npz` when running `nnUNet_predict`). ## Method 3: Docker Inference Requires `nvidia-docker` to be installed on the system ([Installation Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)). This `nnunet_docker` predicts ascites with all 5 trained folds and ensembles output to a single prediction. 1. Build the `nnunet_docker` image from `Dockerfile`: ```shell user@machine:~/ascites_segmentation$ sudo docker build -t nnunet_docker . ``` 2. Run docker image on test volumes: ```shell user@machine:~/ascites_segmentation$ sudo docker run \ --gpus 0 \ --volume /absolute/path/to/INPUT_FOLDER:/tmp/INPUT_FOLDER \ --volume /absolute/path/to/OUTPUT_FOLDER:/tmp/OUTPUT_FOLDER \ nnunet_docker /bin/sh inference.sh ``` - `--gpus` parameter: - `0, 1, 2, ..., n` for integer number of GPUs - `all` for all available GPUs on the system - `'"device=2,3"'` for specific GPU with ID - `--volume` parameter - `/absolute/path/to/INPUT_FOLDER` and `/absolute/path/to/OUTPUT_FOLDER` folders on the host system needs to be specified - `INPUT_FOLDER` contains all `.nii.gz` volumes to be predicted - predicted results will be written to `OUTPUT_FOLDER`