farzadab commited on
Commit
745db72
·
verified ·
1 Parent(s): f891c1e

Upload UltravoxPipeline

Browse files
Files changed (3) hide show
  1. config.json +4 -0
  2. ultravox_model.py +5 -142
  3. ultravox_pipeline.py +2 -2
config.json CHANGED
@@ -40,6 +40,10 @@
40
  }
41
  },
42
  "impl": "ultravox_pipeline.UltravoxPipeline",
 
 
 
 
43
  "type": "multimodal"
44
  }
45
  },
 
40
  }
41
  },
42
  "impl": "ultravox_pipeline.UltravoxPipeline",
43
+ "pt": [
44
+ "UltravoxModel"
45
+ ],
46
+ "tf": [],
47
  "type": "multimodal"
48
  }
49
  },
ultravox_model.py CHANGED
@@ -12,148 +12,8 @@ import transformers.models
12
 
13
  # We must use relative import in this directory to allow uploading to HF Hub
14
  from . import ultravox_config
15
-
16
- # modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
17
- # see this issue for the commentary: https://github.com/huggingface/transformers/issues/25744
18
- #
19
- # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
20
- #
21
- # Licensed under the Apache License, Version 2.0 (the "License");
22
- # you may not use this file except in compliance with the License.
23
- # You may obtain a copy of the License at
24
- #
25
- # http://www.apache.org/licenses/LICENSE-2.0
26
- #
27
- # Unless required by applicable law or agreed to in writing, software
28
- # distributed under the License is distributed on an "AS IS" BASIS,
29
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30
- # See the License for the specific language governing permissions and
31
- # limitations under the License.
32
- import torch
33
- import torch.nn as nn
34
- import transformers
35
- import transformers.modeling_outputs
36
- from transformers.models.whisper import modeling_whisper as whisper
37
-
38
-
39
- class WhisperEncoder(whisper.WhisperEncoder):
40
- """
41
- Encoder portion of OpenAI's Whisper model.
42
-
43
- This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
44
- 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
45
- 2. allow less than 30 second of audio padding to be passed in:
46
- - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
47
- - embed_pos is now sliced to match the length of `inputs_embeds`
48
-
49
- Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
50
- """
51
-
52
- base_model_prefix = "model.encoder"
53
-
54
- def forward(
55
- self,
56
- input_features,
57
- attention_mask=None,
58
- head_mask=None,
59
- output_attentions=None,
60
- output_hidden_states=None,
61
- return_dict=None,
62
- ):
63
- expected_seq_length = (
64
- self.config.max_source_positions
65
- * self.conv1.stride[0]
66
- * self.conv2.stride[0]
67
- )
68
- if input_features.shape[-1] > expected_seq_length:
69
- raise ValueError(
70
- f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
71
- )
72
-
73
- output_attentions = (
74
- output_attentions
75
- if output_attentions is not None
76
- else self.config.output_attentions
77
- )
78
- output_hidden_states = (
79
- output_hidden_states
80
- if output_hidden_states is not None
81
- else self.config.output_hidden_states
82
- )
83
- return_dict = (
84
- return_dict if return_dict is not None else self.config.use_return_dict
85
- )
86
- inputs_embeds = nn.functional.gelu(self.conv1(input_features))
87
- inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
88
-
89
- inputs_embeds = inputs_embeds.permute(0, 2, 1)
90
- embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
91
-
92
- hidden_states = inputs_embeds + embed_pos
93
- hidden_states = nn.functional.dropout(
94
- hidden_states, p=self.dropout, training=self.training
95
- )
96
-
97
- encoder_states = () if output_hidden_states else None
98
- all_attentions = () if output_attentions else None
99
-
100
- # check if head_mask has a correct number of layers specified if desired
101
- if head_mask is not None:
102
- assert head_mask.size()[0] == (
103
- len(self.layers)
104
- ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
105
-
106
- for idx, encoder_layer in enumerate(self.layers):
107
- if output_hidden_states:
108
- encoder_states = encoder_states + (hidden_states,)
109
- # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
110
- to_drop = False
111
- if self.training:
112
- dropout_probability = torch.rand([])
113
- if dropout_probability < self.layerdrop: # skip the layer
114
- to_drop = True
115
-
116
- if to_drop:
117
- layer_outputs = (None, None)
118
- else:
119
- if self.gradient_checkpointing and self.training:
120
- layer_outputs = self._gradient_checkpointing_func(
121
- encoder_layer.__call__,
122
- hidden_states,
123
- None,
124
- (head_mask[idx] if head_mask is not None else None),
125
- output_attentions,
126
- )
127
- else:
128
- layer_outputs = encoder_layer(
129
- hidden_states,
130
- None,
131
- layer_head_mask=(
132
- head_mask[idx] if head_mask is not None else None
133
- ),
134
- output_attentions=output_attentions,
135
- )
136
-
137
- hidden_states = layer_outputs[0]
138
-
139
- if output_attentions:
140
- all_attentions = all_attentions + (layer_outputs[1],)
141
-
142
- hidden_states = self.layer_norm(hidden_states)
143
- if output_hidden_states:
144
- encoder_states = encoder_states + (hidden_states,)
145
-
146
- if not return_dict:
147
- return tuple(
148
- v
149
- for v in [hidden_states, encoder_states, all_attentions]
150
- if v is not None
151
- )
152
- return transformers.modeling_outputs.BaseModelOutput(
153
- last_hidden_state=hidden_states,
154
- hidden_states=encoder_states,
155
- attentions=all_attentions,
156
- )
157
 
158
 
159
  class UltravoxModel(
@@ -544,6 +404,9 @@ transformers.AutoModel.register(ultravox_config.UltravoxConfig, UltravoxModel)
544
  # ultravox_config.UltravoxConfig, UltravoxModel
545
  # )
546
  UltravoxModel.register_for_auto_class()
 
 
 
547
  # UltravoxModel.register_for_auto_class("AutoModelForCausalLM")
548
 
549
 
 
12
 
13
  # We must use relative import in this directory to allow uploading to HF Hub
14
  from . import ultravox_config
15
+ from . import ultravox_processing
16
+ from . import whisper_model_modified
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
 
19
  class UltravoxModel(
 
404
  # ultravox_config.UltravoxConfig, UltravoxModel
405
  # )
406
  UltravoxModel.register_for_auto_class()
407
+ transformers.AutoProcessor.register(
408
+ ultravox_config.UltravoxConfig, ultravox_processing.UltravoxProcessor
409
+ )
410
  # UltravoxModel.register_for_auto_class("AutoModelForCausalLM")
411
 
412
 
ultravox_pipeline.py CHANGED
@@ -4,8 +4,8 @@ from typing import Any, Dict, List, Optional
4
  import transformers
5
 
6
  # We must use relative import in this directory to allow uploading to HF Hub
7
- import .ultravox_model
8
- import .ultravox_processing
9
 
10
 
11
  class UltravoxPipeline(transformers.Pipeline):
 
4
  import transformers
5
 
6
  # We must use relative import in this directory to allow uploading to HF Hub
7
+ from . import ultravox_model
8
+ from . import ultravox_processing
9
 
10
 
11
  class UltravoxPipeline(transformers.Pipeline):