updates
Browse files- README.md +25 -0
- handler.py +0 -5
README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- vision
|
4 |
+
- zero-shot-image-classification
|
5 |
+
- endpoints-template
|
6 |
+
library_name: generic
|
7 |
+
---
|
8 |
+
|
9 |
+
# Fork of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) for a `zero-sho-image-classification` Inference endpoint.
|
10 |
+
|
11 |
+
This repository implements a `custom` task for `zero-shot-image-classification` for 🤗 Inference Endpoints. The code for the customized
|
12 |
+
pipeline is in the handler.py.
|
13 |
+
|
14 |
+
To use deploy this model an Inference Endpoint you have to select `Custom` as task to use the `handler.py` file.
|
15 |
+
|
16 |
+
### expected Request payload
|
17 |
+
|
18 |
+
```json
|
19 |
+
{
|
20 |
+
"image": encoded_image,
|
21 |
+
"parameters": {
|
22 |
+
"candidate_labels": "green, yellow, blue, white, silver"
|
23 |
+
}
|
24 |
+
}
|
25 |
+
```
|
handler.py
CHANGED
@@ -17,17 +17,12 @@ class EndpointHandler():
|
|
17 |
Return:
|
18 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
19 |
"""
|
20 |
-
#inputs = data.pop("inputs", data)
|
21 |
-
#image_data = inputs['image']
|
22 |
-
|
23 |
image_data = data.pop("image", data)
|
24 |
# decode base64 image to PIL
|
25 |
image = Image.open(BytesIO(base64.b64decode(image_data)))
|
26 |
|
27 |
parameters = data.pop("parameters", data)
|
28 |
-
#parameters = inputs['parameters']
|
29 |
candidate_labels = parameters['candidate_labels']
|
30 |
-
print(candidate_labels)
|
31 |
|
32 |
candidate_labels_array = list(map(str.strip, candidate_labels.split(',')))
|
33 |
|
|
|
17 |
Return:
|
18 |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
19 |
"""
|
|
|
|
|
|
|
20 |
image_data = data.pop("image", data)
|
21 |
# decode base64 image to PIL
|
22 |
image = Image.open(BytesIO(base64.b64decode(image_data)))
|
23 |
|
24 |
parameters = data.pop("parameters", data)
|
|
|
25 |
candidate_labels = parameters['candidate_labels']
|
|
|
26 |
|
27 |
candidate_labels_array = list(map(str.strip, candidate_labels.split(',')))
|
28 |
|