from typing import Dict, List, Any from PIL import Image from io import BytesIO from transformers import pipeline import base64 class EndpointHandler(): def __init__(self, path=""): self.pipeline=pipeline("zero-shot-image-classification",model="openai/clip-vit-large-patch14-336") def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj:`string`) parameters (:obj:) Return: A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} """ image_data = data.pop("inputs", data) # decode base64 image to PIL image = Image.open(BytesIO(base64.b64decode(image_data))) parameters = data.pop("parameters", data) candidate_labels = parameters['candidate_labels'] candidate_labels_array = list(map(str.strip, candidate_labels.split(','))) # run prediction one image wit provided candiates prediction = self.pipeline(images=[image], candidate_labels=candidate_labels_array) return prediction[0]