update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: ijelid-indobertweet
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# ijelid-indobertweet
|
18 |
+
|
19 |
+
This model was trained from scratch on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2804
|
22 |
+
- Precision: 0.9323
|
23 |
+
- Recall: 0.9394
|
24 |
+
- F1: 0.9356
|
25 |
+
- Accuracy: 0.9587
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| No log | 1.0 | 386 | 0.1666 | 0.8968 | 0.9014 | 0.8982 | 0.9465 |
|
57 |
+
| 0.257 | 2.0 | 772 | 0.1522 | 0.9062 | 0.9368 | 0.9206 | 0.9517 |
|
58 |
+
| 0.1092 | 3.0 | 1158 | 0.1462 | 0.9233 | 0.9335 | 0.9280 | 0.9556 |
|
59 |
+
| 0.0739 | 4.0 | 1544 | 0.1563 | 0.9312 | 0.9361 | 0.9336 | 0.9568 |
|
60 |
+
| 0.0739 | 5.0 | 1930 | 0.1671 | 0.9224 | 0.9413 | 0.9312 | 0.9573 |
|
61 |
+
| 0.0474 | 6.0 | 2316 | 0.1719 | 0.9303 | 0.9394 | 0.9346 | 0.9578 |
|
62 |
+
| 0.0339 | 7.0 | 2702 | 0.1841 | 0.9249 | 0.9389 | 0.9314 | 0.9576 |
|
63 |
+
| 0.0237 | 8.0 | 3088 | 0.2030 | 0.9224 | 0.9380 | 0.9297 | 0.9570 |
|
64 |
+
| 0.0237 | 9.0 | 3474 | 0.2106 | 0.9289 | 0.9377 | 0.9331 | 0.9576 |
|
65 |
+
| 0.0185 | 10.0 | 3860 | 0.2264 | 0.9277 | 0.9389 | 0.9330 | 0.9571 |
|
66 |
+
| 0.0132 | 11.0 | 4246 | 0.2331 | 0.9336 | 0.9344 | 0.9339 | 0.9574 |
|
67 |
+
| 0.0101 | 12.0 | 4632 | 0.2403 | 0.9353 | 0.9375 | 0.9363 | 0.9586 |
|
68 |
+
| 0.0082 | 13.0 | 5018 | 0.2509 | 0.9311 | 0.9373 | 0.9340 | 0.9582 |
|
69 |
+
| 0.0082 | 14.0 | 5404 | 0.2548 | 0.9344 | 0.9351 | 0.9346 | 0.9578 |
|
70 |
+
| 0.0062 | 15.0 | 5790 | 0.2608 | 0.9359 | 0.9372 | 0.9365 | 0.9588 |
|
71 |
+
| 0.005 | 16.0 | 6176 | 0.2667 | 0.9298 | 0.9407 | 0.9350 | 0.9587 |
|
72 |
+
| 0.0045 | 17.0 | 6562 | 0.2741 | 0.9337 | 0.9408 | 0.9371 | 0.9592 |
|
73 |
+
| 0.0045 | 18.0 | 6948 | 0.2793 | 0.9342 | 0.9371 | 0.9355 | 0.9589 |
|
74 |
+
| 0.0035 | 19.0 | 7334 | 0.2806 | 0.9299 | 0.9391 | 0.9342 | 0.9588 |
|
75 |
+
| 0.0034 | 20.0 | 7720 | 0.2804 | 0.9323 | 0.9394 | 0.9356 | 0.9587 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.21.2
|
81 |
+
- Pytorch 1.7.1
|
82 |
+
- Datasets 2.5.1
|
83 |
+
- Tokenizers 0.12.1
|