File size: 8,794 Bytes
c422045 e1cdc5b 9552183 3458bf6 c422045 e1cdc5b 2ff0836 4b62fcc a4e85da bfbc812 2ff0836 e1cdc5b 2ff0836 eb838c2 e1cdc5b 4b62fcc e1cdc5b 2ff0836 e1cdc5b 2ff0836 e1cdc5b 2ff0836 eb838c2 9552183 3458bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
---
license: apache-2.0
tags:
- UNA
- simple-math
- juanako
base_model: abacusai/Smaug-34B-v0.1
datasets:
- fblgit/simple-math
- jondurbin/bagel-v0.3
model-index:
- name: UNA-SimpleSmaug-34b-v1beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 74.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 70.17
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 45.56
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.15
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.95
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.96
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.33
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
---
# UNA-SimpleSmaug-34b-v1beta
Scoring 04-February-2024 #1 34B model, outperforming its original base model Smaug-34B-v0.1 with `77.41` 😎
Oh, btw.. this one went thru SFT so the abacus inside Smaug is back to normal.. so you can further train/dpo him .. RESET!..
*UPDATES* March : Stills undisputed 34B King
Smaug 70B stills undisputed 70B King
====
And people wonders.. why there is no UNA of Hermes or Smaug 70B? << i dont think is worth the time to spend on a model that is widely known for not being too useful, likely UNA can fix some of the internal mess..
for Hermes, we spoke chitchat quick a couple times but nothing solid, but we would like to make a reborn of excellent models using UNA, just liek we did with UNA-Dolphin where we saw
relevant performance is short time.
===
![UNA](https://huggingface.co/fblgit/UNA-SimpleSmaug-34b-v1beta/resolve/main/unasimple.png)
Applied UNA only on the Attention, not on the MLP's
* Is based on Smaug
* SimpleMath dataset
* It was trained on Axolotl
## Experiment
The thing here is to understand whats the impact of SimpleMath applied at the attention layer during a SFT session and how it impacts on the neural network overall.
Results: Improving mathematican and reasoning capabilities without degrading and presserving previous training sessions.
**And enjoy our ModelSimilarities tool detector** https://github.com/fblgit/model-similarity where we confirmed numerically the bloodties of the model.
## Evals
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.41|
|AI2 Reasoning Challenge (25-Shot)|74.57|
|HellaSwag (10-Shot) |86.74|
|MMLU (5-Shot) |76.68|
|TruthfulQA (0-shot) |70.17|
|Winogrande (5-shot) |83.82|
|GSM8k (5-shot) |72.48|
```
| Task |Version| Metric |Value |
|-------------|------:|--------|----------------:|
|arc_challenge| HF|acc_norm| 0.7457337883959 |
|gsm8k | HF|acc | 0.7247915087187 |
|mmlu | HF|acc | 0.7649553475572 |
|mmlu | HF|acc_norm| 0.7681713551647 |
|hellaswag | HF|acc_norm| 0.8673571001792 |
|truthfulqa | HF|mc2 | 0.7016557407771 |
|winogrande | HF|acc | 0.8382004735595 |
|------------------------------------------------|
```
Increasing GSM, MMLU, ARC, WINO.
## Citations
To abacusai for making Smaug-34B, the Bagel, and all the magic behind the base model.
**If you use the model, provide citation even for merges or anything.**
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta)
| Metric |Value|
|-------------------|----:|
|Avg. |23.12|
|IFEval (0-Shot) |45.56|
|BBH (3-Shot) |32.78|
|MATH Lvl 5 (4-Shot)| 0.15|
|GPQA (0-shot) | 8.95|
|MuSR (0-shot) |11.96|
|MMLU-PRO (5-shot) |39.33|
|