File size: 10,429 Bytes
71938a3 23107ed 71938a3 23107ed 71938a3 2400e03 71938a3 2400e03 db160d4 8dbecd6 db160d4 23107ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- UNA
- juanako
- mixtral
- MoE
model-index:
- name: UNAversal-8x7B-v1beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.39
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.97
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta
name: Open LLM Leaderboard
---
# UNAversal - Uniform Neural Alignment (MoE)
This is just a beta, a first release so people can start working on franksteins and so.
It does achieve high GSM/Math and TQA, so ideally you can merge it with other mixtrals and see what coming out of it
Based on [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
## UNA Details
For this model we came out with the most obvious, placing UNA on the router_logit. It does work, but we saw a much better performance on SFT by doing so.
So this model DOES have UNA-SFT phase, its highly experimental and it was merely using LLaMA-Factory datasets by example alpaca.
As the others:
- Can be finetuned further, try 2e-5 or **1e-4 (since its MOE)**
- Can be merged, here you will have to improvise and please report findings on a discussion thread.
**REMINDER**: please.. cite, it does help on the research and the lab itself, seriously.
## NEED YOUR HELP!!
I need a multi-turn trainloop for the Mixtral, that can squeeze the juice out of 8xH100's properly. Please feel free to reach @fblgit either discord or twitter. thanks!
# Evals
Here there are some, but we also submitted it to the HF eval queue....
## GSM8k 5-Shot
```
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer| 5|exact_match|0.6603|± | 0.013|
```
## ARC 25-Shot
```
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 25|acc |0.6621|± |0.0138|
| | |none | 25|acc_norm|0.6962|± |0.0134|
```
## TruthfulQA 0-Shot (MC2)
```
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|--------------|-------|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml |none | 0|acc |0.7122|± |0.0141|
```
## 0-Shots Evals
```
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|--------------|-------|------|-----:|----------|-----:|---|-----:|
|arc_challenge |Yaml |none | 0|acc |0.6101|± |0.0143|
| | |none | 0|acc_norm |0.6425|± |0.0140|
|arc_easy |Yaml |none | 0|acc |0.8615|± |0.0071|
| | |none | 0|acc_norm |0.8375|± |0.0076|
|boolq |Yaml |none | 0|acc |0.8624|± |0.0060|
|lambada_openai|Yaml |none | 0|perplexity|2.8318|± |0.0507|
| | |none | 0|acc |0.7650|± |0.0059|
|mathqa |Yaml |none | 0|acc |0.4472|± |0.0091|
| | |none | 0|acc_norm |0.4436|± |0.0091|
|piqa |Yaml |none | 0|acc |0.8292|± |0.0088|
| | |none | 0|acc_norm |0.8422|± |0.0085|
|pubmedqa |Yaml |none | 0|acc |0.7920|± |0.0182|
|sciq |Yaml |none | 0|acc |0.9630|± |0.0060|
| | |none | 0|acc_norm |0.9370|± |0.0077|
```
## BBH at 0-Shot
```
vllm (pretrained=fblgit/UNAversal-8x7B-v1beta,tensor_parallel_size=2,data_parallel_size=4,gpu_memory_utilization=0.8,dtype=float16), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: auto
| Tasks |Version| Filter |n-shot| Metric |Value | |Stderr|
|----------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:|
|bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772|
| - bbh_cot_fewshot_boolean_expressions |Yaml |get-answer| 0|exact_match|0.8840|± |0.0203|
| - bbh_cot_fewshot_causal_judgement |Yaml |get-answer| 0|exact_match|0.6417|± |0.0352|
| - bbh_cot_fewshot_date_understanding |Yaml |get-answer| 0|exact_match|0.7600|± |0.0271|
| - bbh_cot_fewshot_disambiguation_qa |Yaml |get-answer| 0|exact_match|0.7160|± |0.0286|
| - bbh_cot_fewshot_dyck_languages |Yaml |get-answer| 0|exact_match|0.1800|± |0.0243|
| - bbh_cot_fewshot_formal_fallacies |Yaml |get-answer| 0|exact_match|0.6520|± |0.0302|
| - bbh_cot_fewshot_geometric_shapes |Yaml |get-answer| 0|exact_match|0.3880|± |0.0309|
| - bbh_cot_fewshot_hyperbaton |Yaml |get-answer| 0|exact_match|0.9600|± |0.0124|
| - bbh_cot_fewshot_logical_deduction_five_objects |Yaml |get-answer| 0|exact_match|0.5360|± |0.0316|
| - bbh_cot_fewshot_logical_deduction_seven_objects |Yaml |get-answer| 0|exact_match|0.5040|± |0.0317|
| - bbh_cot_fewshot_logical_deduction_three_objects |Yaml |get-answer| 0|exact_match|0.8600|± |0.0220|
| - bbh_cot_fewshot_movie_recommendation |Yaml |get-answer| 0|exact_match|0.7840|± |0.0261|
| - bbh_cot_fewshot_multistep_arithmetic_two |Yaml |get-answer| 0|exact_match|0.6600|± |0.0300|
| - bbh_cot_fewshot_navigate |Yaml |get-answer| 0|exact_match|0.8160|± |0.0246|
| - bbh_cot_fewshot_object_counting |Yaml |get-answer| 0|exact_match|0.8360|± |0.0235|
| - bbh_cot_fewshot_penguins_in_a_table |Yaml |get-answer| 0|exact_match|0.7329|± |0.0367|
| - bbh_cot_fewshot_reasoning_about_colored_objects |Yaml |get-answer| 0|exact_match|0.8120|± |0.0248|
| - bbh_cot_fewshot_ruin_names |Yaml |get-answer| 0|exact_match|0.4440|± |0.0315|
| - bbh_cot_fewshot_salient_translation_error_detection |Yaml |get-answer| 0|exact_match|0.5200|± |0.0317|
| - bbh_cot_fewshot_snarks |Yaml |get-answer| 0|exact_match|0.7135|± |0.0340|
| - bbh_cot_fewshot_sports_understanding |Yaml |get-answer| 0|exact_match|0.9400|± |0.0151|
| - bbh_cot_fewshot_temporal_sequences |Yaml |get-answer| 0|exact_match|0.7560|± |0.0272|
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects |Yaml |get-answer| 0|exact_match|0.5680|± |0.0314|
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306|
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306|
| - bbh_cot_fewshot_web_of_lies |Yaml |get-answer| 0|exact_match|0.9560|± |0.0130|
| - bbh_cot_fewshot_word_sorting |Yaml |get-answer| 0|exact_match|0.3800|± |0.0308|
|Groups|Version| Filter |n-shot| Metric |Value | |Stderr|
|------|-------|----------|-----:|-----------|-----:|---|-----:|
|bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNAversal-8x7B-v1beta)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.78|
|AI2 Reasoning Challenge (25-Shot)|69.80|
|HellaSwag (10-Shot) |86.90|
|MMLU (5-Shot) |70.39|
|TruthfulQA (0-shot) |71.97|
|Winogrande (5-shot) |82.00|
|GSM8k (5-shot) |61.64|
|