Sentence Similarity
Transformers
Safetensors
multilingual
nllb-llm2vec
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
{ | |
"architectures": [ | |
"NLLBLLM2Vec" | |
], | |
"auto_map": { | |
"AutoConfig": "configuration_nllbllm2vec.NLLBLLM2VecConfig", | |
"AutoModel": "modeling_nllbllm2vec.NLLBLLM2Vec", | |
"AutoModelForSequenceClassification": "modeling_nllbllm2vec.NLLBLLM2VecForSequenceClassification", | |
"AutoModelForTokenClassification": "modeling_nllbllm2vec.NLLBLLM2VecForTokenClassification" | |
}, | |
"llm2vec_config": { | |
"_name_or_path": "McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp", | |
"bos_token_id": 128000, | |
"eos_token_id": 128001, | |
"intermediate_size": 14336, | |
"max_position_embeddings": 8192, | |
"model_type": "llama", | |
"num_key_value_heads": 8, | |
"rms_norm_eps": 1e-05, | |
"rope_theta": 500000, | |
"torch_dtype": "bfloat16", | |
"use_cache": false, | |
"vocab_size": 128256 | |
}, | |
"model_type": "nllb-llm2vec", | |
"nllb_config": { | |
"_name_or_path": "facebook/nllb-200-distilled-600M", | |
"architectures": [ | |
"M2M100Encoder" | |
], | |
"decoder_layerdrop": 0, | |
"encoder_layerdrop": 0, | |
"max_length": 200, | |
"model_type": "m2m_100", | |
"tokenizer_class": "NllbTokenizer", | |
"torch_dtype": "bfloat16", | |
"vocab_size": 256206 | |
}, | |
"torch_dtype": "bfloat16", | |
"transformers_version": "4.45.2" | |
} | |