Sentence Similarity
Transformers
Safetensors
multilingual
nllb-llm2vec
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
Fabian-David Schmidt
commited on
Commit
·
838c37a
1
Parent(s):
ba88283
update config and modelling files
Browse files- config.json +1 -3
- configuration_nllbllm2vec.py +15 -2
- modeling_nllbllm2vec.py +243 -407
config.json
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "fdschmidt93/NLLBLLM2Vec",
|
3 |
"architectures": [
|
4 |
"NLLBLLM2Vec"
|
5 |
],
|
@@ -37,6 +36,5 @@
|
|
37 |
"vocab_size": 256206
|
38 |
},
|
39 |
"torch_dtype": "bfloat16",
|
40 |
-
"transformers_version": "4.
|
41 |
}
|
42 |
-
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"NLLBLLM2Vec"
|
4 |
],
|
|
|
36 |
"vocab_size": 256206
|
37 |
},
|
38 |
"torch_dtype": "bfloat16",
|
39 |
+
"transformers_version": "4.45.2"
|
40 |
}
|
|
configuration_nllbllm2vec.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import AutoConfig
|
2 |
from transformers.configuration_utils import PretrainedConfig
|
3 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
@@ -36,6 +37,7 @@ DEFAULT_M2M100_CONFIG = {
|
|
36 |
"vocab_size": 256206,
|
37 |
"tokenizer_class": "NllbTokenizer",
|
38 |
"max_length": 200,
|
|
|
39 |
}
|
40 |
|
41 |
DEFAULT_LLAMA_CONFIG = {
|
@@ -61,6 +63,7 @@ DEFAULT_LLAMA_CONFIG = {
|
|
61 |
"transformers_version": "4.40.0.dev0",
|
62 |
"use_cache": False,
|
63 |
"vocab_size": 128256,
|
|
|
64 |
}
|
65 |
|
66 |
|
@@ -70,13 +73,23 @@ class NLLBLLM2VecConfig(PretrainedConfig):
|
|
70 |
|
71 |
def __init__(
|
72 |
self,
|
73 |
-
nllb_config:
|
74 |
-
llm2vec_config:
|
|
|
|
|
75 |
**kwargs,
|
76 |
):
|
77 |
super().__init__(**kwargs)
|
|
|
78 |
self.nllb_config = M2M100Config(**nllb_config)
|
|
|
79 |
self.llm2vec_config = LlamaConfig(**llm2vec_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
AutoConfig.register(NLLBLLM2VEC_TYPE, NLLBLLM2VecConfig)
|
|
|
1 |
+
from typing import Optional, Dict
|
2 |
from transformers import AutoConfig
|
3 |
from transformers.configuration_utils import PretrainedConfig
|
4 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
|
37 |
"vocab_size": 256206,
|
38 |
"tokenizer_class": "NllbTokenizer",
|
39 |
"max_length": 200,
|
40 |
+
"_attn_implementation": "flash_attention_2",
|
41 |
}
|
42 |
|
43 |
DEFAULT_LLAMA_CONFIG = {
|
|
|
63 |
"transformers_version": "4.40.0.dev0",
|
64 |
"use_cache": False,
|
65 |
"vocab_size": 128256,
|
66 |
+
"_attn_implementation": "flash_attention_2",
|
67 |
}
|
68 |
|
69 |
|
|
|
73 |
|
74 |
def __init__(
|
75 |
self,
|
76 |
+
nllb_config: Dict = DEFAULT_M2M100_CONFIG,
|
77 |
+
llm2vec_config: Dict = DEFAULT_LLAMA_CONFIG,
|
78 |
+
_attn_implementation="sdpa",
|
79 |
+
initializer_range: Optional[float] = None,
|
80 |
**kwargs,
|
81 |
):
|
82 |
super().__init__(**kwargs)
|
83 |
+
self._attn_implementation = _attn_implementation
|
84 |
self.nllb_config = M2M100Config(**nllb_config)
|
85 |
+
self.nllb_config._attn_implementation = _attn_implementation
|
86 |
self.llm2vec_config = LlamaConfig(**llm2vec_config)
|
87 |
+
self.llm2vec_config._attn_implementation = _attn_implementation
|
88 |
+
if initializer_range is None:
|
89 |
+
self.initializer_range = self.llm2vec_config.initializer_range
|
90 |
+
else:
|
91 |
+
self.initializer_range = initializer_range
|
92 |
+
self.llm2vec_config.initializer_range
|
93 |
|
94 |
|
95 |
AutoConfig.register(NLLBLLM2VEC_TYPE, NLLBLLM2VecConfig)
|
modeling_nllbllm2vec.py
CHANGED
@@ -1,24 +1,69 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
from transformers.modeling_outputs import (
|
8 |
BaseModelOutputWithPooling,
|
|
|
9 |
SequenceClassifierOutputWithPast,
|
|
|
10 |
)
|
11 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
12 |
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
|
13 |
-
from transformers.
|
14 |
|
15 |
from .configuration_nllbllm2vec import NLLBLLM2VecConfig
|
16 |
from .modeling_llama_encoder import LlamaEncoderModel
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
class NLLBLLM2Vec(PreTrainedModel):
|
20 |
config_class = NLLBLLM2VecConfig
|
21 |
model_type = "nllb-llm2vec"
|
|
|
|
|
22 |
"""
|
23 |
NLLBLLM2Vec model combining NLLB and LLama encoders.
|
24 |
|
@@ -46,9 +91,13 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
46 |
|
47 |
if config is not None:
|
48 |
super().__init__(config, *inputs, **kwargs)
|
|
|
|
|
|
|
49 |
self.nllb_encoder = nllb_encoder or M2M100Encoder(config.nllb_config)
|
50 |
self.llm2vec = llm2vec or LlamaEncoderModel(config.llm2vec_config)
|
51 |
self.config = config
|
|
|
52 |
else:
|
53 |
# Both encoders are provided
|
54 |
self.nllb_encoder = cast(M2M100Encoder, nllb_encoder)
|
@@ -64,7 +113,15 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
64 |
self.llm2vec.config.hidden_size,
|
65 |
bias=False,
|
66 |
)
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def forward(
|
70 |
self,
|
@@ -91,14 +148,12 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
91 |
else:
|
92 |
seq_indices, seq_offsets = indices
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
nllb_last_hidden_state = self.up_proj(nllb_last_hidden_state)
|
101 |
-
nllb_last_hidden_state = nllb_last_hidden_state.detach().clone()
|
102 |
outputs = self.llm2vec(
|
103 |
inputs_embeds=nllb_last_hidden_state,
|
104 |
attention_mask=attention_mask,
|
@@ -133,14 +188,22 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
133 |
self,
|
134 |
inputs: List[str],
|
135 |
src_lang: str = "eng_Latn",
|
|
|
136 |
tokenize_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
137 |
) -> torch.Tensor:
|
138 |
"""
|
139 |
Encode input texts into embeddings.
|
140 |
|
141 |
Args:
|
142 |
inputs (List[str]): List of input texts.
|
143 |
-
src_lang (str): Source language code.
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
tokenize_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
|
145 |
Defaults to:
|
146 |
>> tokenize_kwargs = {
|
@@ -149,26 +212,54 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
149 |
>> "max_length": 512,
|
150 |
>> "return_tensors": "pt",
|
151 |
>> }
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
Returns:
|
154 |
torch.Tensor: Mean-pooled sequence embeddings of the inputs.
|
155 |
"""
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
"truncation": True,
|
160 |
-
"max_length": 512,
|
161 |
-
"return_tensors": "pt",
|
162 |
-
}
|
163 |
|
164 |
tokenizer = self.tokenizer
|
165 |
tokenizer.src_lang = src_lang
|
166 |
device = next(self.parameters()).device
|
167 |
-
batch = tokenizer(inputs, **tokenize_kwargs).to(device)
|
168 |
-
device_type = device.type # e.g., 'cuda' or 'cpu'
|
169 |
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
@staticmethod
|
174 |
def _get_input_offsets(
|
@@ -192,12 +283,8 @@ class NLLBLLM2Vec(PreTrainedModel):
|
|
192 |
non_padded_lengths = attention_mask.sum(
|
193 |
dim=1
|
194 |
) # Count non-padded tokens per sequence
|
195 |
-
offsets =
|
196 |
-
|
197 |
-
torch.tensor([0], device=attention_mask.device),
|
198 |
-
non_padded_lengths.cumsum(dim=0)[:-1],
|
199 |
-
]
|
200 |
-
)
|
201 |
return input_indices, offsets
|
202 |
|
203 |
@staticmethod
|
@@ -235,10 +322,13 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel):
|
|
235 |
config_class = NLLBLLM2VecConfig
|
236 |
model_type = "nllb-llm2vec"
|
237 |
base_model_prefix = "model"
|
|
|
|
|
238 |
|
239 |
def __init__(self, config):
|
240 |
super().__init__(config)
|
241 |
self.num_labels = config.num_labels
|
|
|
242 |
self.model = NLLBLLM2Vec(config)
|
243 |
self.score = nn.Linear(
|
244 |
config.llm2vec_config.hidden_size, self.num_labels, bias=False
|
@@ -247,114 +337,29 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel):
|
|
247 |
# Initialize weights and apply final processing
|
248 |
self.post_init()
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
def get_input_embeddings(self):
|
251 |
return self.model.nllb.embed_tokens
|
252 |
|
253 |
def set_input_embeddings(self, value):
|
254 |
self.model.nllb.embed_tokens = value
|
255 |
-
|
256 |
-
# We need to modify the adapter config and state dict at runtime
|
257 |
-
# such that adapter weights are correctly loaded from an AutoModel-suitable
|
258 |
-
# adapter_config.json and adapter_config.safetensors
|
259 |
-
def load_adapter(
|
260 |
-
self,
|
261 |
-
peft_model_id: Optional[str] = None,
|
262 |
-
adapter_name: Optional[str] = None,
|
263 |
-
revision: Optional[str] = None,
|
264 |
-
token: Optional[str] = None,
|
265 |
-
device_map: Optional[str] = "auto",
|
266 |
-
max_memory: Optional[str] = None,
|
267 |
-
offload_folder: Optional[str] = None,
|
268 |
-
offload_index: Optional[int] = None,
|
269 |
-
peft_config: Optional[Dict[str, Any]] = None,
|
270 |
-
adapter_state_dict: Optional[Dict[str, "torch.Tensor"]] = None,
|
271 |
-
adapter_kwargs: Optional[Dict[str, Any]] = None,
|
272 |
-
) -> None:
|
273 |
-
from peft import PeftConfig, load_peft_weights # type: ignore
|
274 |
-
from transformers.utils import find_adapter_config_file
|
275 |
-
|
276 |
-
if adapter_kwargs is None:
|
277 |
-
adapter_kwargs = {}
|
278 |
-
|
279 |
-
if "device" not in adapter_kwargs:
|
280 |
-
device = (
|
281 |
-
self.device
|
282 |
-
if not hasattr(self, "hf_device_map")
|
283 |
-
else list(self.hf_device_map.values())[0]
|
284 |
-
)
|
285 |
-
else:
|
286 |
-
device = adapter_kwargs["device"]
|
287 |
-
# To avoid PEFT errors later on with safetensors.
|
288 |
-
if isinstance(device, torch.device):
|
289 |
-
device = str(device)
|
290 |
-
|
291 |
-
# Override token with adapter_kwargs' token
|
292 |
-
if "token" in adapter_kwargs:
|
293 |
-
token = adapter_kwargs["token"]
|
294 |
-
|
295 |
-
if peft_model_id is None and (
|
296 |
-
adapter_state_dict is None and peft_config is None
|
297 |
-
):
|
298 |
-
raise ValueError(
|
299 |
-
"You should either pass a `peft_model_id` or a `peft_config` and `adapter_state_dict` to load an adapter."
|
300 |
-
)
|
301 |
-
|
302 |
-
if peft_config is None:
|
303 |
-
assert isinstance(peft_model_id, str)
|
304 |
-
adapter_config_file = find_adapter_config_file(
|
305 |
-
peft_model_id,
|
306 |
-
token=token,
|
307 |
-
**adapter_kwargs,
|
308 |
-
)
|
309 |
-
|
310 |
-
if adapter_config_file is None:
|
311 |
-
raise ValueError(
|
312 |
-
f"adapter model file not found in {peft_model_id}. Make sure you are passing the correct path to the "
|
313 |
-
"adapter model."
|
314 |
-
)
|
315 |
-
|
316 |
-
peft_config = cast(
|
317 |
-
Dict[str, Any],
|
318 |
-
PeftConfig.from_pretrained(
|
319 |
-
peft_model_id,
|
320 |
-
token=token,
|
321 |
-
**adapter_kwargs,
|
322 |
-
),
|
323 |
-
)
|
324 |
-
peft_config.target_modules = [ # type: ignore
|
325 |
-
"model." + module
|
326 |
-
for module in peft_config.target_modules # type: ignore
|
327 |
-
]
|
328 |
-
|
329 |
-
if peft_model_id is not None:
|
330 |
-
adapter_state_dict = load_peft_weights(
|
331 |
-
peft_model_id, token=token, device=device, **adapter_kwargs
|
332 |
-
)
|
333 |
-
|
334 |
-
assert isinstance(adapter_state_dict, dict)
|
335 |
-
|
336 |
-
# correctly set the name
|
337 |
-
processed_adapter_state_dict = {}
|
338 |
-
prefix = "base_model."
|
339 |
-
for key, value in adapter_state_dict.items():
|
340 |
-
if key.startswith(prefix):
|
341 |
-
new_key = key[len(prefix) :]
|
342 |
-
else:
|
343 |
-
new_key = key
|
344 |
-
processed_adapter_state_dict[new_key] = value
|
345 |
-
return super().load_adapter(
|
346 |
-
peft_model_id=None,
|
347 |
-
adapter_name=adapter_name,
|
348 |
-
revision=revision,
|
349 |
-
token=token,
|
350 |
-
device_map=device_map,
|
351 |
-
max_memory=max_memory,
|
352 |
-
offload_folder=offload_folder,
|
353 |
-
offload_index=offload_index,
|
354 |
-
peft_config=peft_config,
|
355 |
-
adapter_state_dict=processed_adapter_state_dict,
|
356 |
-
adapter_kwargs=adapter_kwargs,
|
357 |
-
)
|
358 |
|
359 |
def forward(
|
360 |
self,
|
@@ -420,10 +425,110 @@ class NLLBLLM2VecForSequenceClassification(PreTrainedModel):
|
|
420 |
output = (pooled_logits,) + transformer_outputs[1:]
|
421 |
return ((loss,) + output) if loss is not None else output
|
422 |
|
423 |
-
return
|
424 |
loss=loss,
|
425 |
hidden_states=hidden_states,
|
426 |
logits=pooled_logits,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
)
|
428 |
|
429 |
|
@@ -431,275 +536,6 @@ AutoModel.register(NLLBLLM2VecConfig, NLLBLLM2Vec)
|
|
431 |
AutoModelForSequenceClassification.register(
|
432 |
NLLBLLM2VecConfig, NLLBLLM2VecForSequenceClassification
|
433 |
)
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
from transformers import AutoModel
|
438 |
-
|
439 |
-
cfg = NLLBLLM2VecConfig()
|
440 |
-
model = NLLBLLM2Vec(cfg)
|
441 |
-
|
442 |
-
nllb = AutoModel.from_pretrained(
|
443 |
-
"facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16
|
444 |
-
).encoder
|
445 |
-
# llm2vec = AutoModel.from_pretrained(
|
446 |
-
# "fdschmidt93/LLM2Vec-Meta-Llama-3.1-8B-Instruct-mntp-unsup-simcse",
|
447 |
-
# trust_remote_code=True,
|
448 |
-
# torch_dtype=torch.bfloat16,
|
449 |
-
# )
|
450 |
-
llama = LlamaEncoderModel.from_pretrained("../trident-nllb-llm2vec/data/model/llm2vec_llama3-1_unsupervised/", torch_dtype=torch.bfloat16)
|
451 |
-
model.nllb_encoder.load_state_dict(nllb.state_dict())
|
452 |
-
model.llm2vec.load_state_dict(llama.state_dict())
|
453 |
-
ckpt = torch.load("./step=20000-weights.ckpt", map_location="cpu")
|
454 |
-
model.up_proj.load_state_dict({"weight": ckpt["model.up_proj.weight"]})
|
455 |
-
|
456 |
-
model.save_pretrained("../weights_new")
|
457 |
-
|
458 |
-
from peft.mapping import get_peft_model
|
459 |
-
from peft.tuners.lora.config import LoraConfig
|
460 |
-
|
461 |
-
lora_config = LoraConfig(
|
462 |
-
r=16,
|
463 |
-
lora_alpha=32,
|
464 |
-
lora_dropout=0.0,
|
465 |
-
bias="none",
|
466 |
-
task_type="FEATURE_EXTRACTION",
|
467 |
-
target_modules=[
|
468 |
-
"llm2vec.layers.0.self_attn.q_proj",
|
469 |
-
"llm2vec.layers.0.self_attn.k_proj",
|
470 |
-
"llm2vec.layers.0.self_attn.v_proj",
|
471 |
-
"llm2vec.layers.0.self_attn.o_proj",
|
472 |
-
"llm2vec.layers.0.mlp.gate_proj",
|
473 |
-
"llm2vec.layers.0.mlp.up_proj",
|
474 |
-
"llm2vec.layers.0.mlp.down_proj",
|
475 |
-
"llm2vec.layers.1.self_attn.q_proj",
|
476 |
-
"llm2vec.layers.1.self_attn.k_proj",
|
477 |
-
"llm2vec.layers.1.self_attn.v_proj",
|
478 |
-
"llm2vec.layers.1.self_attn.o_proj",
|
479 |
-
"llm2vec.layers.1.mlp.gate_proj",
|
480 |
-
"llm2vec.layers.1.mlp.up_proj",
|
481 |
-
"llm2vec.layers.1.mlp.down_proj",
|
482 |
-
"llm2vec.layers.2.self_attn.q_proj",
|
483 |
-
"llm2vec.layers.2.self_attn.k_proj",
|
484 |
-
"llm2vec.layers.2.self_attn.v_proj",
|
485 |
-
"llm2vec.layers.2.self_attn.o_proj",
|
486 |
-
"llm2vec.layers.2.mlp.gate_proj",
|
487 |
-
"llm2vec.layers.2.mlp.up_proj",
|
488 |
-
"llm2vec.layers.2.mlp.down_proj",
|
489 |
-
"llm2vec.layers.3.self_attn.q_proj",
|
490 |
-
"llm2vec.layers.3.self_attn.k_proj",
|
491 |
-
"llm2vec.layers.3.self_attn.v_proj",
|
492 |
-
"llm2vec.layers.3.self_attn.o_proj",
|
493 |
-
"llm2vec.layers.3.mlp.gate_proj",
|
494 |
-
"llm2vec.layers.3.mlp.up_proj",
|
495 |
-
"llm2vec.layers.3.mlp.down_proj",
|
496 |
-
"llm2vec.layers.4.self_attn.q_proj",
|
497 |
-
"llm2vec.layers.4.self_attn.k_proj",
|
498 |
-
"llm2vec.layers.4.self_attn.v_proj",
|
499 |
-
"llm2vec.layers.4.self_attn.o_proj",
|
500 |
-
"llm2vec.layers.4.mlp.gate_proj",
|
501 |
-
"llm2vec.layers.4.mlp.up_proj",
|
502 |
-
"llm2vec.layers.4.mlp.down_proj",
|
503 |
-
"llm2vec.layers.5.self_attn.q_proj",
|
504 |
-
"llm2vec.layers.5.self_attn.k_proj",
|
505 |
-
"llm2vec.layers.5.self_attn.v_proj",
|
506 |
-
"llm2vec.layers.5.self_attn.o_proj",
|
507 |
-
"llm2vec.layers.5.mlp.gate_proj",
|
508 |
-
"llm2vec.layers.5.mlp.up_proj",
|
509 |
-
"llm2vec.layers.5.mlp.down_proj",
|
510 |
-
"llm2vec.layers.6.self_attn.q_proj",
|
511 |
-
"llm2vec.layers.6.self_attn.k_proj",
|
512 |
-
"llm2vec.layers.6.self_attn.v_proj",
|
513 |
-
"llm2vec.layers.6.self_attn.o_proj",
|
514 |
-
"llm2vec.layers.6.mlp.gate_proj",
|
515 |
-
"llm2vec.layers.6.mlp.up_proj",
|
516 |
-
"llm2vec.layers.6.mlp.down_proj",
|
517 |
-
"llm2vec.layers.7.self_attn.q_proj",
|
518 |
-
"llm2vec.layers.7.self_attn.k_proj",
|
519 |
-
"llm2vec.layers.7.self_attn.v_proj",
|
520 |
-
"llm2vec.layers.7.self_attn.o_proj",
|
521 |
-
"llm2vec.layers.7.mlp.gate_proj",
|
522 |
-
"llm2vec.layers.7.mlp.up_proj",
|
523 |
-
"llm2vec.layers.7.mlp.down_proj",
|
524 |
-
"llm2vec.layers.8.self_attn.q_proj",
|
525 |
-
"llm2vec.layers.8.self_attn.k_proj",
|
526 |
-
"llm2vec.layers.8.self_attn.v_proj",
|
527 |
-
"llm2vec.layers.8.self_attn.o_proj",
|
528 |
-
"llm2vec.layers.8.mlp.gate_proj",
|
529 |
-
"llm2vec.layers.8.mlp.up_proj",
|
530 |
-
"llm2vec.layers.8.mlp.down_proj",
|
531 |
-
"llm2vec.layers.9.self_attn.q_proj",
|
532 |
-
"llm2vec.layers.9.self_attn.k_proj",
|
533 |
-
"llm2vec.layers.9.self_attn.v_proj",
|
534 |
-
"llm2vec.layers.9.self_attn.o_proj",
|
535 |
-
"llm2vec.layers.9.mlp.gate_proj",
|
536 |
-
"llm2vec.layers.9.mlp.up_proj",
|
537 |
-
"llm2vec.layers.9.mlp.down_proj",
|
538 |
-
"llm2vec.layers.10.self_attn.q_proj",
|
539 |
-
"llm2vec.layers.10.self_attn.k_proj",
|
540 |
-
"llm2vec.layers.10.self_attn.v_proj",
|
541 |
-
"llm2vec.layers.10.self_attn.o_proj",
|
542 |
-
"llm2vec.layers.10.mlp.gate_proj",
|
543 |
-
"llm2vec.layers.10.mlp.up_proj",
|
544 |
-
"llm2vec.layers.10.mlp.down_proj",
|
545 |
-
"llm2vec.layers.11.self_attn.q_proj",
|
546 |
-
"llm2vec.layers.11.self_attn.k_proj",
|
547 |
-
"llm2vec.layers.11.self_attn.v_proj",
|
548 |
-
"llm2vec.layers.11.self_attn.o_proj",
|
549 |
-
"llm2vec.layers.11.mlp.gate_proj",
|
550 |
-
"llm2vec.layers.11.mlp.up_proj",
|
551 |
-
"llm2vec.layers.11.mlp.down_proj",
|
552 |
-
"llm2vec.layers.12.self_attn.q_proj",
|
553 |
-
"llm2vec.layers.12.self_attn.k_proj",
|
554 |
-
"llm2vec.layers.12.self_attn.v_proj",
|
555 |
-
"llm2vec.layers.12.self_attn.o_proj",
|
556 |
-
"llm2vec.layers.12.mlp.gate_proj",
|
557 |
-
"llm2vec.layers.12.mlp.up_proj",
|
558 |
-
"llm2vec.layers.12.mlp.down_proj",
|
559 |
-
"llm2vec.layers.13.self_attn.q_proj",
|
560 |
-
"llm2vec.layers.13.self_attn.k_proj",
|
561 |
-
"llm2vec.layers.13.self_attn.v_proj",
|
562 |
-
"llm2vec.layers.13.self_attn.o_proj",
|
563 |
-
"llm2vec.layers.13.mlp.gate_proj",
|
564 |
-
"llm2vec.layers.13.mlp.up_proj",
|
565 |
-
"llm2vec.layers.13.mlp.down_proj",
|
566 |
-
"llm2vec.layers.14.self_attn.q_proj",
|
567 |
-
"llm2vec.layers.14.self_attn.k_proj",
|
568 |
-
"llm2vec.layers.14.self_attn.v_proj",
|
569 |
-
"llm2vec.layers.14.self_attn.o_proj",
|
570 |
-
"llm2vec.layers.14.mlp.gate_proj",
|
571 |
-
"llm2vec.layers.14.mlp.up_proj",
|
572 |
-
"llm2vec.layers.14.mlp.down_proj",
|
573 |
-
"llm2vec.layers.15.self_attn.q_proj",
|
574 |
-
"llm2vec.layers.15.self_attn.k_proj",
|
575 |
-
"llm2vec.layers.15.self_attn.v_proj",
|
576 |
-
"llm2vec.layers.15.self_attn.o_proj",
|
577 |
-
"llm2vec.layers.15.mlp.gate_proj",
|
578 |
-
"llm2vec.layers.15.mlp.up_proj",
|
579 |
-
"llm2vec.layers.15.mlp.down_proj",
|
580 |
-
"llm2vec.layers.16.self_attn.q_proj",
|
581 |
-
"llm2vec.layers.16.self_attn.k_proj",
|
582 |
-
"llm2vec.layers.16.self_attn.v_proj",
|
583 |
-
"llm2vec.layers.16.self_attn.o_proj",
|
584 |
-
"llm2vec.layers.16.mlp.gate_proj",
|
585 |
-
"llm2vec.layers.16.mlp.up_proj",
|
586 |
-
"llm2vec.layers.16.mlp.down_proj",
|
587 |
-
"llm2vec.layers.17.self_attn.q_proj",
|
588 |
-
"llm2vec.layers.17.self_attn.k_proj",
|
589 |
-
"llm2vec.layers.17.self_attn.v_proj",
|
590 |
-
"llm2vec.layers.17.self_attn.o_proj",
|
591 |
-
"llm2vec.layers.17.mlp.gate_proj",
|
592 |
-
"llm2vec.layers.17.mlp.up_proj",
|
593 |
-
"llm2vec.layers.17.mlp.down_proj",
|
594 |
-
"llm2vec.layers.18.self_attn.q_proj",
|
595 |
-
"llm2vec.layers.18.self_attn.k_proj",
|
596 |
-
"llm2vec.layers.18.self_attn.v_proj",
|
597 |
-
"llm2vec.layers.18.self_attn.o_proj",
|
598 |
-
"llm2vec.layers.18.mlp.gate_proj",
|
599 |
-
"llm2vec.layers.18.mlp.up_proj",
|
600 |
-
"llm2vec.layers.18.mlp.down_proj",
|
601 |
-
"llm2vec.layers.19.self_attn.q_proj",
|
602 |
-
"llm2vec.layers.19.self_attn.k_proj",
|
603 |
-
"llm2vec.layers.19.self_attn.v_proj",
|
604 |
-
"llm2vec.layers.19.self_attn.o_proj",
|
605 |
-
"llm2vec.layers.19.mlp.gate_proj",
|
606 |
-
"llm2vec.layers.19.mlp.up_proj",
|
607 |
-
"llm2vec.layers.19.mlp.down_proj",
|
608 |
-
"llm2vec.layers.20.self_attn.q_proj",
|
609 |
-
"llm2vec.layers.20.self_attn.k_proj",
|
610 |
-
"llm2vec.layers.20.self_attn.v_proj",
|
611 |
-
"llm2vec.layers.20.self_attn.o_proj",
|
612 |
-
"llm2vec.layers.20.mlp.gate_proj",
|
613 |
-
"llm2vec.layers.20.mlp.up_proj",
|
614 |
-
"llm2vec.layers.20.mlp.down_proj",
|
615 |
-
"llm2vec.layers.21.self_attn.q_proj",
|
616 |
-
"llm2vec.layers.21.self_attn.k_proj",
|
617 |
-
"llm2vec.layers.21.self_attn.v_proj",
|
618 |
-
"llm2vec.layers.21.self_attn.o_proj",
|
619 |
-
"llm2vec.layers.21.mlp.gate_proj",
|
620 |
-
"llm2vec.layers.21.mlp.up_proj",
|
621 |
-
"llm2vec.layers.21.mlp.down_proj",
|
622 |
-
"llm2vec.layers.22.self_attn.q_proj",
|
623 |
-
"llm2vec.layers.22.self_attn.k_proj",
|
624 |
-
"llm2vec.layers.22.self_attn.v_proj",
|
625 |
-
"llm2vec.layers.22.self_attn.o_proj",
|
626 |
-
"llm2vec.layers.22.mlp.gate_proj",
|
627 |
-
"llm2vec.layers.22.mlp.up_proj",
|
628 |
-
"llm2vec.layers.22.mlp.down_proj",
|
629 |
-
"llm2vec.layers.23.self_attn.q_proj",
|
630 |
-
"llm2vec.layers.23.self_attn.k_proj",
|
631 |
-
"llm2vec.layers.23.self_attn.v_proj",
|
632 |
-
"llm2vec.layers.23.self_attn.o_proj",
|
633 |
-
"llm2vec.layers.23.mlp.gate_proj",
|
634 |
-
"llm2vec.layers.23.mlp.up_proj",
|
635 |
-
"llm2vec.layers.23.mlp.down_proj",
|
636 |
-
"llm2vec.layers.24.self_attn.q_proj",
|
637 |
-
"llm2vec.layers.24.self_attn.k_proj",
|
638 |
-
"llm2vec.layers.24.self_attn.v_proj",
|
639 |
-
"llm2vec.layers.24.self_attn.o_proj",
|
640 |
-
"llm2vec.layers.24.mlp.gate_proj",
|
641 |
-
"llm2vec.layers.24.mlp.up_proj",
|
642 |
-
"llm2vec.layers.24.mlp.down_proj",
|
643 |
-
"llm2vec.layers.25.self_attn.q_proj",
|
644 |
-
"llm2vec.layers.25.self_attn.k_proj",
|
645 |
-
"llm2vec.layers.25.self_attn.v_proj",
|
646 |
-
"llm2vec.layers.25.self_attn.o_proj",
|
647 |
-
"llm2vec.layers.25.mlp.gate_proj",
|
648 |
-
"llm2vec.layers.25.mlp.up_proj",
|
649 |
-
"llm2vec.layers.25.mlp.down_proj",
|
650 |
-
"llm2vec.layers.26.self_attn.q_proj",
|
651 |
-
"llm2vec.layers.26.self_attn.k_proj",
|
652 |
-
"llm2vec.layers.26.self_attn.v_proj",
|
653 |
-
"llm2vec.layers.26.self_attn.o_proj",
|
654 |
-
"llm2vec.layers.26.mlp.gate_proj",
|
655 |
-
"llm2vec.layers.26.mlp.up_proj",
|
656 |
-
"llm2vec.layers.26.mlp.down_proj",
|
657 |
-
"llm2vec.layers.27.self_attn.q_proj",
|
658 |
-
"llm2vec.layers.27.self_attn.k_proj",
|
659 |
-
"llm2vec.layers.27.self_attn.v_proj",
|
660 |
-
"llm2vec.layers.27.self_attn.o_proj",
|
661 |
-
"llm2vec.layers.27.mlp.gate_proj",
|
662 |
-
"llm2vec.layers.27.mlp.up_proj",
|
663 |
-
"llm2vec.layers.27.mlp.down_proj",
|
664 |
-
"llm2vec.layers.28.self_attn.q_proj",
|
665 |
-
"llm2vec.layers.28.self_attn.k_proj",
|
666 |
-
"llm2vec.layers.28.self_attn.v_proj",
|
667 |
-
"llm2vec.layers.28.self_attn.o_proj",
|
668 |
-
"llm2vec.layers.28.mlp.gate_proj",
|
669 |
-
"llm2vec.layers.28.mlp.up_proj",
|
670 |
-
"llm2vec.layers.28.mlp.down_proj",
|
671 |
-
"llm2vec.layers.29.self_attn.q_proj",
|
672 |
-
"llm2vec.layers.29.self_attn.k_proj",
|
673 |
-
"llm2vec.layers.29.self_attn.v_proj",
|
674 |
-
"llm2vec.layers.29.self_attn.o_proj",
|
675 |
-
"llm2vec.layers.29.mlp.gate_proj",
|
676 |
-
"llm2vec.layers.29.mlp.up_proj",
|
677 |
-
"llm2vec.layers.29.mlp.down_proj",
|
678 |
-
"llm2vec.layers.30.self_attn.q_proj",
|
679 |
-
"llm2vec.layers.30.self_attn.k_proj",
|
680 |
-
"llm2vec.layers.30.self_attn.v_proj",
|
681 |
-
"llm2vec.layers.30.self_attn.o_proj",
|
682 |
-
"llm2vec.layers.30.mlp.gate_proj",
|
683 |
-
"llm2vec.layers.30.mlp.up_proj",
|
684 |
-
"llm2vec.layers.30.mlp.down_proj",
|
685 |
-
"llm2vec.layers.31.self_attn.q_proj",
|
686 |
-
"llm2vec.layers.31.self_attn.k_proj",
|
687 |
-
"llm2vec.layers.31.self_attn.v_proj",
|
688 |
-
"llm2vec.layers.31.self_attn.o_proj",
|
689 |
-
"llm2vec.layers.31.mlp.gate_proj",
|
690 |
-
"llm2vec.layers.31.mlp.up_proj",
|
691 |
-
"llm2vec.layers.31.mlp.down_proj",
|
692 |
-
],
|
693 |
-
)
|
694 |
-
peft_model = get_peft_model(model, lora_config)
|
695 |
-
peft_model.save_pretrained("../nllb-llm2vec-saved")
|
696 |
-
import json
|
697 |
-
|
698 |
-
with open("./model.safetensors.index.json", "r") as f:
|
699 |
-
print(json.load(f))
|
700 |
-
|
701 |
-
from transformers import AutoModelForSequenceClassification
|
702 |
-
|
703 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
704 |
-
".", trust_remote_code=True, device_map="cuda"
|
705 |
-
)
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast
|
5 |
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
import torch.nn.functional as F
|
9 |
+
import transformers
|
10 |
+
from packaging import version
|
11 |
+
from torch.utils.data.dataloader import DataLoader
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers.cache_utils import Cache
|
14 |
from transformers.modeling_outputs import (
|
15 |
BaseModelOutputWithPooling,
|
16 |
+
ModelOutput,
|
17 |
SequenceClassifierOutputWithPast,
|
18 |
+
TokenClassifierOutput,
|
19 |
)
|
20 |
from transformers.modeling_utils import PreTrainedModel
|
21 |
+
from transformers.models.auto import AutoModel, AutoModelForSequenceClassification
|
22 |
from transformers.models.m2m_100.modeling_m2m_100 import M2M100Encoder
|
23 |
+
from transformers.tokenization_utils import BatchEncoding
|
24 |
|
25 |
from .configuration_nllbllm2vec import NLLBLLM2VecConfig
|
26 |
from .modeling_llama_encoder import LlamaEncoderModel
|
27 |
|
28 |
+
DEFAULT_TOKENIZE_KWARGS = {
|
29 |
+
"padding": True,
|
30 |
+
"truncation": True,
|
31 |
+
"max_length": 512,
|
32 |
+
"return_tensors": "pt",
|
33 |
+
}
|
34 |
+
|
35 |
+
DEFAULT_DATALOADER_KWARGS = {
|
36 |
+
"shuffle": False,
|
37 |
+
"batch_size": 32,
|
38 |
+
"pin_memory": True,
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
def default_collate_fn_closure(tokenizer, tokenize_kwargs) -> Callable:
|
43 |
+
def collate_fn(batch: list[str]) -> BatchEncoding:
|
44 |
+
return tokenizer(batch, **tokenize_kwargs)
|
45 |
+
return collate_fn
|
46 |
+
|
47 |
+
|
48 |
+
def defaulter(kwd_dict: Optional[Dict], default_dict: Dict) -> Dict:
|
49 |
+
return default_dict if kwd_dict is None else {**default_dict, **kwd_dict}
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class SequenceClassifierOutputWithPastAndPooler(ModelOutput):
|
54 |
+
loss: Optional[torch.FloatTensor] = None
|
55 |
+
logits: torch.FloatTensor = None
|
56 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
57 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
58 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
59 |
+
pooler_output: torch.FloatTensor = None
|
60 |
+
|
61 |
|
62 |
class NLLBLLM2Vec(PreTrainedModel):
|
63 |
config_class = NLLBLLM2VecConfig
|
64 |
model_type = "nllb-llm2vec"
|
65 |
+
_supports_flash_attn_2 = True
|
66 |
+
_supports_sdpa = True
|
67 |
"""
|
68 |
NLLBLLM2Vec model combining NLLB and LLama encoders.
|
69 |
|
|
|
91 |
|
92 |
if config is not None:
|
93 |
super().__init__(config, *inputs, **kwargs)
|
94 |
+
# from_pretrained overwrites this after config instantiation, so we make sure it's correctly set
|
95 |
+
config.nllb_config._attn_implementation = config._attn_implementation
|
96 |
+
config.llm2vec_config._attn_implementation = config._attn_implementation
|
97 |
self.nllb_encoder = nllb_encoder or M2M100Encoder(config.nllb_config)
|
98 |
self.llm2vec = llm2vec or LlamaEncoderModel(config.llm2vec_config)
|
99 |
self.config = config
|
100 |
+
|
101 |
else:
|
102 |
# Both encoders are provided
|
103 |
self.nllb_encoder = cast(M2M100Encoder, nllb_encoder)
|
|
|
113 |
self.llm2vec.config.hidden_size,
|
114 |
bias=False,
|
115 |
)
|
116 |
+
|
117 |
+
# TODO: update this once commit is included
|
118 |
+
min_version = "4.46.0"
|
119 |
+
if self.config.nllb_config._attn_implementation == "flash_attention_2":
|
120 |
+
if version.parse(transformers.__version__) < version.parse(min_version):
|
121 |
+
warnings.warn(
|
122 |
+
f"Installed transformers version ({transformers.__version__}) never sets NLLB-encoder dropout to `False` with FlashAttention2. See https://github.com/huggingface/transformers/pull/33844 for more info. Consider upgrading to latest to {min_version} or master.",
|
123 |
+
UserWarning,
|
124 |
+
)
|
125 |
|
126 |
def forward(
|
127 |
self,
|
|
|
148 |
else:
|
149 |
seq_indices, seq_offsets = indices
|
150 |
|
151 |
+
nllb_outputs = self.nllb_encoder(
|
152 |
+
input_ids=input_ids,
|
153 |
+
attention_mask=attention_mask,
|
154 |
+
)
|
155 |
+
nllb_last_hidden_state = nllb_outputs.last_hidden_state
|
156 |
+
nllb_last_hidden_state = self.up_proj(nllb_last_hidden_state)
|
|
|
|
|
157 |
outputs = self.llm2vec(
|
158 |
inputs_embeds=nllb_last_hidden_state,
|
159 |
attention_mask=attention_mask,
|
|
|
188 |
self,
|
189 |
inputs: List[str],
|
190 |
src_lang: str = "eng_Latn",
|
191 |
+
dataloader_kwargs: Optional[Dict[str, Any]] = None,
|
192 |
tokenize_kwargs: Optional[Dict[str, Any]] = None,
|
193 |
+
collate_fn_closure: Optional[Callable] = None,
|
194 |
) -> torch.Tensor:
|
195 |
"""
|
196 |
Encode input texts into embeddings.
|
197 |
|
198 |
Args:
|
199 |
inputs (List[str]): List of input texts.
|
200 |
+
src_lang (str): Source language code for the tokenizer (default: `"eng_Latn"`).
|
201 |
+
dataloader_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the dataloader excl. `collate_fn`.
|
202 |
+
Defaults to:
|
203 |
+
>> dataloader_kwargs = {
|
204 |
+
>> "shuffle": False,
|
205 |
+
>> "pin_memory": True,
|
206 |
+
>> }
|
207 |
tokenize_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
|
208 |
Defaults to:
|
209 |
>> tokenize_kwargs = {
|
|
|
212 |
>> "max_length": 512,
|
213 |
>> "return_tensors": "pt",
|
214 |
>> }
|
215 |
+
collate_fn_closure (Optional[Callable]): Closure that should return a `collate_fn`.
|
216 |
+
Defaults to:
|
217 |
+
>> def default_collate_fn_closure(tokenizer, tokenize_kwargs) -> Callable:
|
218 |
+
>> def collate_fn(batch: list[str]) -> BatchEncoding:
|
219 |
+
>> return tokenizer(batch, **tokenize_kwargs)
|
220 |
+
>> return collate_fn
|
221 |
Returns:
|
222 |
torch.Tensor: Mean-pooled sequence embeddings of the inputs.
|
223 |
"""
|
224 |
+
# merge user kwargs with defaults, giving priority to user kwargs
|
225 |
+
tokenize_kwargs = defaulter(tokenize_kwargs, DEFAULT_TOKENIZE_KWARGS)
|
226 |
+
dataloader_kwargs = defaulter(dataloader_kwargs, DEFAULT_DATALOADER_KWARGS)
|
|
|
|
|
|
|
|
|
227 |
|
228 |
tokenizer = self.tokenizer
|
229 |
tokenizer.src_lang = src_lang
|
230 |
device = next(self.parameters()).device
|
|
|
|
|
231 |
|
232 |
+
if collate_fn_closure is None:
|
233 |
+
collate_fn = default_collate_fn_closure(tokenizer, tokenize_kwargs)
|
234 |
+
else:
|
235 |
+
collate_fn = collate_fn_closure(tokenizer, tokenize_kwargs)
|
236 |
+
assert (
|
237 |
+
"collate_fn" not in dataloader_kwargs
|
238 |
+
), "`collate_fn` should be created via `collate_fn_closure`"
|
239 |
+
self.eval()
|
240 |
+
if len(inputs) > dataloader_kwargs.get("batch_size", 1):
|
241 |
+
dataloader = DataLoader(inputs, collate_fn=collate_fn, **dataloader_kwargs) # type: ignore
|
242 |
+
all_embeddings = []
|
243 |
+
# Iterate through the dataloader with a progress bar and autocast
|
244 |
+
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
|
245 |
+
for batch in tqdm(dataloader, desc="Encoding"):
|
246 |
+
# Move batch to device
|
247 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
248 |
+
# Forward pass through the model (assumes model returns embeddings)
|
249 |
+
with torch.inference_mode():
|
250 |
+
pooled_embeddings = cast(
|
251 |
+
SequenceClassifierOutputWithPastAndPooler, self(**batch)
|
252 |
+
).pooler_output # Assuming model returns sequence embeddings
|
253 |
+
all_embeddings.append(pooled_embeddings)
|
254 |
+
# Concatenate all pooled embeddings along the batch dimension
|
255 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
256 |
+
else:
|
257 |
+
batch = {k: v.to(device) for k, v in collate_fn(inputs)}
|
258 |
+
with torch.inference_mode():
|
259 |
+
all_embeddings = cast(
|
260 |
+
SequenceClassifierOutputWithPastAndPooler, self(**batch)
|
261 |
+
).pooler_output # Assuming model returns sequence embeddings
|
262 |
+
return all_embeddings
|
263 |
|
264 |
@staticmethod
|
265 |
def _get_input_offsets(
|
|
|
283 |
non_padded_lengths = attention_mask.sum(
|
284 |
dim=1
|
285 |
) # Count non-padded tokens per sequence
|
286 |
+
offsets = non_padded_lengths.cumsum(dim=0).roll(shifts=1)
|
287 |
+
offsets[0] = 0
|
|
|
|
|
|
|
|
|
288 |
return input_indices, offsets
|
289 |
|
290 |
@staticmethod
|
|
|
322 |
config_class = NLLBLLM2VecConfig
|
323 |
model_type = "nllb-llm2vec"
|
324 |
base_model_prefix = "model"
|
325 |
+
_supports_flash_attn_2 = True
|
326 |
+
_supports_sdpa = True
|
327 |
|
328 |
def __init__(self, config):
|
329 |
super().__init__(config)
|
330 |
self.num_labels = config.num_labels
|
331 |
+
|
332 |
self.model = NLLBLLM2Vec(config)
|
333 |
self.score = nn.Linear(
|
334 |
config.llm2vec_config.hidden_size, self.num_labels, bias=False
|
|
|
337 |
# Initialize weights and apply final processing
|
338 |
self.post_init()
|
339 |
|
340 |
+
def _init_weights(self, module):
|
341 |
+
if module is self.score:
|
342 |
+
# INFO:
|
343 |
+
# - critical that clf head is in float32 (NusaX perf. drops funky otherwise)
|
344 |
+
# - Initialization needs to be redone, otherwise borked
|
345 |
+
# - Use kaiming uniform, b/c Llama init (cf. `nn.Linear` below) performs worse
|
346 |
+
self.score = self.score.to(torch.float32)
|
347 |
+
torch.nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
|
348 |
+
elif isinstance(module, nn.Linear):
|
349 |
+
if isinstance(module, nn.Linear):
|
350 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
351 |
+
if module.bias is not None:
|
352 |
+
module.bias.data.zero_()
|
353 |
+
elif isinstance(module, nn.Embedding):
|
354 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
355 |
+
if module.padding_idx is not None:
|
356 |
+
module.weight.data[module.padding_idx].zero_()
|
357 |
+
|
358 |
def get_input_embeddings(self):
|
359 |
return self.model.nllb.embed_tokens
|
360 |
|
361 |
def set_input_embeddings(self, value):
|
362 |
self.model.nllb.embed_tokens = value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
def forward(
|
365 |
self,
|
|
|
425 |
output = (pooled_logits,) + transformer_outputs[1:]
|
426 |
return ((loss,) + output) if loss is not None else output
|
427 |
|
428 |
+
return SequenceClassifierOutputWithPastAndPooler(
|
429 |
loss=loss,
|
430 |
hidden_states=hidden_states,
|
431 |
logits=pooled_logits,
|
432 |
+
pooler_output=transformer_outputs.pooler_output,
|
433 |
+
)
|
434 |
+
|
435 |
+
|
436 |
+
class NLLBLLM2VecForTokenClassification(PreTrainedModel):
|
437 |
+
config_class = NLLBLLM2VecConfig
|
438 |
+
model_type = "nllb-llm2vec"
|
439 |
+
base_model_prefix = "model"
|
440 |
+
_supports_flash_attn_2 = True
|
441 |
+
_supports_sdpa = True
|
442 |
+
|
443 |
+
def __init__(self, config: NLLBLLM2VecConfig):
|
444 |
+
super().__init__(config)
|
445 |
+
self.num_labels = config.num_labels
|
446 |
+
|
447 |
+
self.model = NLLBLLM2Vec(config)
|
448 |
+
self.classifier = nn.Linear(
|
449 |
+
config.llm2vec_config.hidden_size, self.num_labels, bias=False
|
450 |
+
)
|
451 |
+
|
452 |
+
# Initialize weights and apply final processing
|
453 |
+
self.post_init()
|
454 |
+
|
455 |
+
def _init_weights(self, module):
|
456 |
+
if module is self.classifier:
|
457 |
+
# INFO:
|
458 |
+
# - critical that clf head is in float32 (NusaX perf. drops funky otherwise)
|
459 |
+
# - Initialization needs to be redone, otherwise borked
|
460 |
+
# - Use kaiming uniform, b/c Llama init (cf. `nn.Linear` below) performs worse
|
461 |
+
self.classifier = self.classifier.to(torch.float32)
|
462 |
+
torch.nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
|
463 |
+
elif isinstance(module, nn.Linear):
|
464 |
+
if isinstance(module, nn.Linear):
|
465 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
466 |
+
if module.bias is not None:
|
467 |
+
module.bias.data.zero_()
|
468 |
+
elif isinstance(module, nn.Embedding):
|
469 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
470 |
+
if module.padding_idx is not None:
|
471 |
+
module.weight.data[module.padding_idx].zero_()
|
472 |
+
|
473 |
+
def get_input_embeddings(self):
|
474 |
+
return self.model.nllb.embed_tokens
|
475 |
+
|
476 |
+
def set_input_embeddings(self, value):
|
477 |
+
self.model.nllb.embed_tokens = value
|
478 |
+
|
479 |
+
# adapted from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification
|
480 |
+
# - removed classifier dropout
|
481 |
+
# - use F.cross_entropy
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
input_ids: Optional[torch.LongTensor] = None,
|
485 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
486 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
487 |
+
position_ids: Optional[torch.LongTensor] = None,
|
488 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
489 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
490 |
+
labels: Optional[torch.LongTensor] = None,
|
491 |
+
output_attentions: Optional[bool] = None,
|
492 |
+
output_hidden_states: Optional[bool] = None,
|
493 |
+
return_dict: Optional[bool] = None,
|
494 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
495 |
+
r"""
|
496 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
497 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
498 |
+
"""
|
499 |
+
return_dict = (
|
500 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
501 |
+
)
|
502 |
+
|
503 |
+
outputs = self.model(
|
504 |
+
input_ids,
|
505 |
+
attention_mask=attention_mask,
|
506 |
+
token_type_ids=token_type_ids,
|
507 |
+
position_ids=position_ids,
|
508 |
+
head_mask=head_mask,
|
509 |
+
inputs_embeds=inputs_embeds,
|
510 |
+
output_attentions=output_attentions,
|
511 |
+
output_hidden_states=output_hidden_states,
|
512 |
+
return_dict=return_dict,
|
513 |
+
)
|
514 |
+
sequence_output = outputs[0]
|
515 |
+
logits = self.classifier(sequence_output)
|
516 |
+
|
517 |
+
loss = None
|
518 |
+
if labels is not None:
|
519 |
+
# move labels to correct device to enable model parallelism
|
520 |
+
labels = labels.to(logits.device)
|
521 |
+
loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
|
522 |
+
|
523 |
+
if not return_dict:
|
524 |
+
output = (logits,) + outputs[2:]
|
525 |
+
return ((loss,) + output) if loss is not None else output
|
526 |
+
|
527 |
+
return TokenClassifierOutput(
|
528 |
+
loss=loss,
|
529 |
+
logits=logits,
|
530 |
+
hidden_states=outputs.hidden_states,
|
531 |
+
attentions=outputs.attentions,
|
532 |
)
|
533 |
|
534 |
|
|
|
536 |
AutoModelForSequenceClassification.register(
|
537 |
NLLBLLM2VecConfig, NLLBLLM2VecForSequenceClassification
|
538 |
)
|
539 |
+
AutoModelForSequenceClassification.register(
|
540 |
+
NLLBLLM2VecConfig, NLLBLLM2VecForTokenClassification
|
541 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|