ppo-LunarLander-v2 / config.json
fearofknowledge's picture
Upload PPO LunarLander-v2 trained agent
c0b962b verified
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a31c8c04e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a31c8c04ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a31c8c04f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a31c8c05000>", "_build": "<function ActorCriticPolicy._build at 0x7a31c8c05090>", "forward": "<function ActorCriticPolicy.forward at 0x7a31c8c05120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a31c8c051b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a31c8c05240>", "_predict": "<function ActorCriticPolicy._predict at 0x7a31c8c052d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a31c8c05360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a31c8c053f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a31c8c05480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a316cd31340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729961179498846978, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqNq71IOYG6M403uQMD2jtV8ng7U8bLvAAAgD8AAIA/APy5OynMR7omkos2QqxlMfcYHzuzbKm1AACAPwAAgD8zCby8RxCwP12wD78dyt2+NhZtPLBZ1zsAAAAAAAAAADMXN77A+LI/vVUWvw7Lyb7Jb4K+OXWDvgAAAAAAAAAAZn/ZPCmIZLq7jIu3ozUBs2nhRbqeh6E2AACAPwAAgD9awkU+FT58PxrXpD4NCxq/Iya0Pk1IjD0AAAAAAAAAAABq8LxIm466G8q/NG/lpy6lvrq6FUOKswAAgD8AAIA/0w60PpsFPT/GijC+qicmv9VW3j69Iom+AAAAAAAAAACaLTa8rp2CulqrvDqvErY1s1zUOlo73LkAAIA/AACAPxq/mL1c/xo9ZD6HPkqfVr7MGEk98y7jPAAAAAAAAAAAmgWiO+4d/D32yZK91oOfvrA48ry6Rgi9AAAAAAAAAADNXG28+1i2PwU+sb6uhuU9o+eNO5ovQr0AAAAAAAAAAJrL3LzhAIG6xofgvH4CgLS1pbK6qLsCNAAAgD8AAIA/AOyqvI/SKLocqJa3z4iwss9vpzumALA2AACAPwAAgD8tcUC+7imePx2dAb/MnDO/lltovgCENzwAAAAAAAAAAFVjzL403UA/KsW2PZBs677og5S+LLcWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE2q7Ackt6MAWyUS+aMAXSUR0CuLDP5xiobdX2UKGgGR0BysuorFwT/aAdLvmgIR0CuLFO2y9mIdX2UKGgGR0Bx1JLHuJDWaAdLyWgIR0CuLJPd2xIKdX2UKGgGR0ByAjhKlHjIaAdLy2gIR0CuLQdH+ZPVdX2UKGgGR0Bxx4S13MY/aAdNEAFoCEdAri0PBFd9lXV9lChoBkdAdD4cHWz4UWgHS/BoCEdAri1Mf/3nIXV9lChoBkdAcAESOBDohmgHS9xoCEdAri1VoWYWtXV9lChoBkdAcap9wWFewGgHS+NoCEdAri3fJ/5Ly3V9lChoBkdActFPFefI0mgHTREBaAhHQK4t7v/BFd91fZQoaAZHQHF9shkiD/VoB0u1aAhHQK4t9HCoCMh1fZQoaAZHQHGNGTLW7OFoB0vHaAhHQK4uKo2GZeB1fZQoaAZHQHEZNwBHTZxoB0vJaAhHQK4uMjrzGxV1fZQoaAZHQHHE7SRbKRxoB0vBaAhHQK4ujaRISUV1fZQoaAZHQHOa8D0UXYVoB0vUaAhHQK4ulM6ij+J1fZQoaAZHQHHcj8cdYGNoB0vbaAhHQK4uoRRuTA51fZQoaAZHQG8NNdRiw0RoB0vAaAhHQK4uzjDsMRZ1fZQoaAZHQHITDD0lJH1oB0vJaAhHQK4vtpSrHVB1fZQoaAZHQG3vCHARChNoB0veaAhHQK4vyyTpxFR1fZQoaAZHQHHmdTP0I1NoB0vNaAhHQK4wQ+7lJYl1fZQoaAZHQHB1te6Zpi9oB0vaaAhHQK4w2AtnPE91fZQoaAZHQHF/CSA6MitoB00nAWgIR0CuMPFRP421dX2UKGgGR0BxvgBp5/smaAdLyWgIR0CuMSe3Ytg8dX2UKGgGR0BxUIP8Q7LdaAdNCQFoCEdArjFinBLwnnV9lChoBkdAcQ4sjVx0dWgHS9RoCEdArjFtY6nzhHV9lChoBkdAcH6U5dWyT2gHS8hoCEdArjqjh1klNXV9lChoBkdAct7p7CzkZWgHS9JoCEdArjrJLqUu+XV9lChoBkdAcpo0ihWYGGgHTRABaAhHQK462Ymb9ZR1fZQoaAZHQHHG8ySFGodoB0vvaAhHQK467Vqesgd1fZQoaAZHQG9UD1XeWOZoB0vIaAhHQK46+Ovt+kR1fZQoaAZHQHJe5u63AmBoB0vbaAhHQK47IPQOWjZ1fZQoaAZHQHL6b0rbxmVoB0veaAhHQK47S96C17Z1fZQoaAZHQHHSeHaews5oB00WAWgIR0CuO8EgGKQ8dX2UKGgGR0BxBkSElE7XaAdL5mgIR0CuPBTzVc2SdX2UKGgGR0Bxxxu5z5oHaAdL9WgIR0CuPFFtbcGkdX2UKGgGR0BxrrZlFtsOaAdLtmgIR0CuPHcVQAMldX2UKGgGR0Bw0c4DLbHqaAdL5mgIR0CuPHwID5j6dX2UKGgGR0BuwTqlgtvoaAdLzWgIR0CuPI/ViF0xdX2UKGgGR0BxCLfHggoxaAdLtmgIR0CuPLIdlum8dX2UKGgGR0Bx7UtthuwYaAdLwWgIR0CuPL5Zr56/dX2UKGgGR0ByXa3z+WGAaAdL5WgIR0CuPOKyfL9udX2UKGgGR0ByZvu2JBPbaAdL3GgIR0CuPQzVc2R8dX2UKGgGR0Bxk4BvJiiJaAdLtWgIR0CuPSePJaJRdX2UKGgGR0Bzlx3MY/FBaAdLxmgIR0CuPSmzKLbYdX2UKGgGR0ByG+ucMEzPaAdLzmgIR0CuPTJAUtZndX2UKGgGR0BwsqhGpda/aAdL5WgIR0CuPVq1G9YfdX2UKGgGR0Bw6k5aNdZ8aAdNEQFoCEdArj3PhbW3B3V9lChoBkdAcKQqx1PnCGgHS85oCEdArj4XiaRZEHV9lChoBkdAcwe+vyLAHmgHS/poCEdArj4hc5bQkXV9lChoBkdAcgSAuqWC3GgHS8toCEdArj6YLVnVXnV9lChoBkdAcXogIQe3hGgHS79oCEdArj6YsyzolnV9lChoBkdAcaZYI0IkaGgHS+ZoCEdArj6tmlImPnV9lChoBkdAdDLZ9NN8E2gHS95oCEdArj71BjWkJ3V9lChoBkdAc2/PVNHpbGgHS9BoCEdArj7+u/1xsHV9lChoBkdAUBTrxAjY7WgHS6loCEdArj8O4/eLvXV9lChoBkdAcYTRJEpiJGgHS+5oCEdArj80Pe54GHV9lChoBkdAcIvQ3PzFuWgHS+9oCEdArj9kM9bHInV9lChoBkdAc1Xi0fHPvGgHS7hoCEdArj9yNOuaF3V9lChoBkdAcXasmOU+tGgHS9VoCEdArj+Tye7L+3V9lChoBkdAcciaG5+Yt2gHTQABaAhHQK4/wE+xGDt1fZQoaAZHQHEWaE384xVoB0v3aAhHQK4/06o2n891fZQoaAZHQHG/TbN8ma9oB0vxaAhHQK4/5qyGBWh1fZQoaAZHQHCTMi0OVgRoB0u8aAhHQK4/6tlqagF1fZQoaAZHQHEfVGCqZMNoB0vAaAhHQK5ANHeaa1F1fZQoaAZHQG9IikXUH6doB0vRaAhHQK5AahvBJqZ1fZQoaAZHQHFmSC8OCoVoB0uwaAhHQK5AgJ3PiUB1fZQoaAZHQHJmXZkCmuVoB0u5aAhHQK5BAwfQrtp1fZQoaAZHQHDcrtmcvuhoB0vgaAhHQK5BIvxH5Jt1fZQoaAZHQHFeGa+evp1oB0vAaAhHQK5BKd8Rcu91fZQoaAZHQG/3z5ftx+9oB0vtaAhHQK5BNN8E3bV1fZQoaAZHQG63pVS4vvloB0vgaAhHQK5BbCUornV1fZQoaAZHQHMzO8oQWepoB0vBaAhHQK5BlkWAPNF1fZQoaAZHQHB/pHZsbedoB0vUaAhHQK5Bvgn+hoN1fZQoaAZHQHC9GiUPhAJoB0u5aAhHQK5B3kFwDNh1fZQoaAZHQHJjXS0BwMpoB0vLaAhHQK5B/fhMrVh1fZQoaAZHQHGHD3225QRoB0v7aAhHQK5B/kYGdI51fZQoaAZHQHLFPlMh5gRoB0vKaAhHQK5CJkrf+CN1fZQoaAZHQHM7hQSBbwBoB0vtaAhHQK5CLLFGXol1fZQoaAZHQG9sUZvUBn1oB0vUaAhHQK5CPScbzbx1fZQoaAZHQHLraD5CWu5oB0vXaAhHQK5C04ffXPJ1fZQoaAZHQHERe0ojOcFoB0vpaAhHQK5DIe5nUUh1fZQoaAZHQHJZScbzbvhoB0u0aAhHQK5DOcGTs6d1fZQoaAZHQHIXZHRTjvNoB00XAWgIR0CuQ1SVObiIdX2UKGgGR0ByT686FM7EaAdLyGgIR0CuQ2PNeMQ3dX2UKGgGR0ByjLpdKNADaAdLz2gIR0CuQ3x6fJ3gdX2UKGgGR0ByFgLlV94NaAdL9GgIR0CuQ8bSJCSidX2UKGgGR0Bwa226TW5IaAdLv2gIR0CuQ+DG96C2dX2UKGgGR0Bw+znuAqd6aAdLt2gIR0CuQ+rKvFFVdX2UKGgGR0ByLngTAWSEaAdLuGgIR0CuRAqeTV2BdX2UKGgGR0Bw1vMFEAo5aAdL4GgIR0CuRBNvOyE+dX2UKGgGR0Bx3FpdrwfAaAdL+mgIR0CuRDaLn9vTdX2UKGgGR0BwobGACnxbaAdLu2gIR0CuRDm5tm+TdX2UKGgGR0BxDisaKk2xaAdLt2gIR0CuRERwAEMcdX2UKGgGR0BwoeT6i0v5aAdL2WgIR0CuRFyzHCGfdX2UKGgGR0Byk+sq8UVSaAdNBQFoCEdArkUG/zreInV9lChoBkdAcl4/0NBnjGgHS81oCEdArkUSnYQJ5XV9lChoBkdAchyP5YYBNmgHS9RoCEdArkWoB7u2JHV9lChoBkdAcB4Tuv2XcGgHS91oCEdArkWwgV45cXV9lChoBkdAbp0pYs/Y8WgHS9doCEdArkXes5n14HV9lChoBkdAc2/htLteD2gHS+toCEdArkZHp4bCJ3V9lChoBkdAcSZdat9x62gHS+FoCEdArkZGNR3u/nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 748, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}