ppo-LunarLander-v2 / config.json
fedorn's picture
5 million training steps
4528257
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2799ff5c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2799ff5cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2799ff5d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2799ff5e10>", "_build": "<function ActorCriticPolicy._build at 0x7f2799ff5ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2799ff5f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2799ff5fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2799ff6050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2799ff60e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2799ff6170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2799ff6200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2799ff6290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2799ff8b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685268675795323376, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHqJH753dQ4/q1rOvO6/TL+V0bC+Zb6uPQAAAAAAAAAAZlxBveG0orpm/zuz/jqXrzRVnbp3HsIzAACAPwAAgD9mhhm9gV+7vBSqlDypfJm9JP4ePVfarD4AAIA/AACAP3Ohpz0pSEe6W2JYuQ3UO7T3R4g7amV/OAAAgD8AAIA/mloyvQ+fVLxy8DE8RrmNPFxYtL2SCGk9AACAPwAAgD8Ahbg8MLS3Px8PDT/jJGs+xDhlvBVL2bsAAAAAAAAAAObErb2uIYC60nYPt2Z2gK8Lo4W6XbklNgAAAAAAAIA/ppP/vZcihz++a9K++iJIv+TKfr52YYq+AAAAAAAAAABmeri9pKsZPJDCpD63TBC+k7D4PWeTg78AAAAAAACAPzP/gLuu9ZO6blDzMvzui7Bb3D26WINWswAAgD8AAIA/AHagvVzTPrrqS288aZgvM9yz4jo2zFszAAAAAAAAgD8magQ+Uuylu5sTQDtxWKe5fKP/vG9Pk7oAAIA/AACAPxo8y70PyhG8K4A0PgsoAz0muyY8JoBRvQAAgD8AAAAAE/AqvkG7mD9iMdO+6aU1v/RMmr764Jm+AAAAAAAAAACzBIw9FNS0uuBeUjNrOAawE6czOnfdwrMAAAAAAACAPwCa770WgCk9Q0PXPncKmL7+SiM+lqCmPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLMmr8zhxaMAWyUS6aMAXSUR0DGuzgBo24vdX2UKGgGR0BzWpmseXAuaAdLqWgIR0DGu0jgXMyKdX2UKGgGR0ByqiYZ2pyZaAdLmGgIR0DGu2BM8HObdX2UKGgGR0ByEbLA57w8aAdLo2gIR0DGu3MEA5q/dX2UKGgGR0BxZIGt6ol2aAdLsGgIR0DGu3bk+5e7dX2UKGgGR0Bxd9cbBGhFaAdLqmgIR0DGu3bfxc3VdX2UKGgGR0Buxe1hLGrCaAdLkWgIR0DGu37jR2KVdX2UKGgGR0Bxpbs5XEIgaAdLk2gIR0DGu4A9vCMxdX2UKGgGR0BwdCioKlYVaAdLomgIR0DGu5SVW0Z4dX2UKGgGR0Bxl1y5qdpZaAdLoWgIR0DGu52D6FdtdX2UKGgGR0BynlD5TIeYaAdLymgIR0DGu6JvegtfdX2UKGgGR0BxZ62d/axpaAdLnGgIR0DGu6K8lHBldX2UKGgGR0ByGsLlV94NaAdLm2gIR0DGu6iJ9AoodX2UKGgGR0BxQRtALRa5aAdLm2gIR0DGu6qDsdDIdX2UKGgGR0Bzb62JBPbgaAdLtGgIR0DGu63fQ8fWdX2UKGgGR0ByqQpH7P6baAdLnWgIR0DGu7T56+nJdX2UKGgGR0BxhExN7BwdaAdLpGgIR0DGu8I0CRwIdX2UKGgGR0BwORbkfcN6aAdLnWgIR0DGu8iEeyRkdX2UKGgGR0ByFVar3j+8aAdLfWgIR0DGu9RHLA58dX2UKGgGR0BzF/jWCmMwaAdLm2gIR0DGu9alrM1TdX2UKGgGR0By92a8Yht+aAdLkmgIR0DGu90ijcmCdX2UKGgGR0BwaMuYhMakaAdLm2gIR0DGu+Fdszl+dX2UKGgGR0ByyHMt9QXRaAdLoWgIR0DGu+0GorFwdX2UKGgGR0BvrdxffGdaaAdLsWgIR0DGu/JfOUt7dX2UKGgGR0BxuCfjCHh1aAdLnWgIR0DGu/1iMHbAdX2UKGgGR0BwTQHQhOgyaAdLmGgIR0DGvALq8lHCdX2UKGgGR0BxQ0mZ3LV4aAdLlmgIR0DGvAwrjHXFdX2UKGgGR0BzJ24wyqMnaAdLmWgIR0DGvBCtJWeZdX2UKGgGR0ByiKdjG1hLaAdLtGgIR0DGvBqtRvWIdX2UKGgGR0BzTmcCo0hvaAdLmWgIR0DGvByABkqddX2UKGgGR0Bx0NxcVxjsaAdLumgIR0DGvB8Qf6oEdX2UKGgGR0BwfsACGN70aAdLkGgIR0DGvCQbKifydX2UKGgGR0ByJoVclgMMaAdLtmgIR0DGvCebExZddX2UKGgGR0Bws3+JgsshaAdLj2gIR0DGvDYxtYSydX2UKGgGR0Bv1ktPHktFaAdLjmgIR0DGvEJa5f+kdX2UKGgGR0Bx+kBV+7UYaAdLomgIR0DGvER8IAwPdX2UKGgGR0Bzw3xvvSc9aAdLxWgIR0DGvE2+fywwdX2UKGgGR0BzTPNQj2SMaAdLl2gIR0DGvFitDD0ldX2UKGgGR0By8MNwzch1aAdLumgIR0DGvFsdvKlpdX2UKGgGR0BzySR/3FkyaAdLmmgIR0DGvGOOIZZTdX2UKGgGR0Bxg0P07KaHaAdLsGgIR0DGvGO+Eh7mdX2UKGgGR0Byi3ch1TzeaAdLkGgIR0DGvG5kPMB7dX2UKGgGR0Bxhk8B+4LDaAdLoGgIR0DGvHQtlI3BdX2UKGgGR0ByvXtoi9qUaAdLs2gIR0DGvHfyPMjedX2UKGgGR0BwPetT1kDqaAdLk2gIR0DGvHnQKKHgdX2UKGgGR0BvMpTsIE8raAdLjGgIR0DGvHmAAhjfdX2UKGgGR0Bujod2gWadaAdLiGgIR0DGvHvz+WGAdX2UKGgGR0Bvvgq3EyckaAdLhmgIR0DGvH3yTY/WdX2UKGgGR0BwXYqhDgIhaAdLomgIR0DGvIQHNX5ndX2UKGgGR0By1t+kP+XJaAdLnWgIR0DGvKfck+otdX2UKGgGR0ByLXIcR15jaAdLsWgIR0DGvKaMPz4DdX2UKGgGR0BxzDesPrfMaAdLq2gIR0DGvL0guAZsdX2UKGgGR0Bw7pj0+TvBaAdLnWgIR0DGvL7T6SDAdX2UKGgGR0BxxakLx7RfaAdLomgIR0DGvMXPAwfydX2UKGgGR0BztHej2zv7aAdLzmgIR0DGvMqD0163dX2UKGgGR0BwXNGjKxLTaAdLpWgIR0DGvNFH4GlidX2UKGgGR0BxKkPjGT9saAdLpmgIR0DGvNITfzjFdX2UKGgGR0BzSiL4vexfaAdLkmgIR0DGvNbjLjgidX2UKGgGR0ByE9DjR2KVaAdLk2gIR0DGvOB5u63BdX2UKGgGR0Byf7lq8DjjaAdLoWgIR0DGvOM2vStvdX2UKGgGR0BySTSx7iQ1aAdLlGgIR0DGvOf0VafSdX2UKGgGR0BzBiRbKRuCaAdLuGgIR0DGvOh/ViF1dX2UKGgGR0BxBL/kvK2baAdLqGgIR0DGvOm0b961dX2UKGgGR0By2p3B55Z9aAdLsGgIR0DGvO3v+fh/dX2UKGgGR0Bycy8Empl0aAdLtWgIR0DGvPNJL/S6dX2UKGgGR0Bw0ve67NB4aAdLjWgIR0DGvQYwM6RydX2UKGgGR0BxeBD/lyR0aAdLkWgIR0DGvQdB4UvgdX2UKGgGR0BxNcI2OyVwaAdLlmgIR0DGvSApKBd2dX2UKGgGR0Bw24n/kvK2aAdLe2gIR0DGvSUvRJEqdX2UKGgGR0A9+9iMHbAUaAdLYWgIR0DGvSYr8R+SdX2UKGgGR0BwqB/LDAJtaAdLn2gIR0DGvSvkkrwwdX2UKGgGR0BvOp46fapQaAdLkmgIR0DGvS4IldC3dX2UKGgGR0BxhdkbxVhkaAdLfmgIR0DGvTD2+PBBdX2UKGgGR0BzSWfRNRFaaAdLnGgIR0DGvTUI5YHPdX2UKGgGR0Bzey6y0KJEaAdLw2gIR0DGvTthZyMldX2UKGgGR0BwJwLb5/LDaAdLjmgIR0DGvT2nhsIndX2UKGgGR0BxNjRkVeruaAdLi2gIR0DGvUDZ39rHdX2UKGgGR0BAae/gzguRaAdLX2gIR0DGvUP4TK1YdX2UKGgGR0Bz9telbeMyaAdLz2gIR0DGvU4fhddFdX2UKGgGR0BybjSncclxaAdLn2gIR0DGvU7A57w8dX2UKGgGR0BxkKZ/kNnXaAdLo2gIR0DGvVUu+RHPdX2UKGgGR0ByrD7655JLaAdLxmgIR0DGvXJ9ZzPsdX2UKGgGR0ByHjlKbrkbaAdLtmgIR0DGvXscdYGMdX2UKGgGR0BzEBrBTGYKaAdLlWgIR0DGvYZLGrCFdX2UKGgGR0Bw8mLGaQV9aAdLn2gIR0DGvYjidat+dX2UKGgGR0Bw9lrXUYsNaAdLmGgIR0DGvYo4hllLdX2UKGgGR0Bze4M1CPZJaAdLlWgIR0DGvY3x+a0AdX2UKGgGR0BzAUJSiudPaAdLmGgIR0DGvZVF8XvZdX2UKGgGR0By5KrR0EHMaAdLkWgIR0DGvZUlu3tsdX2UKGgGR0BydQB3iaRZaAdLemgIR0DGvZZLM9r5dX2UKGgGR0By+3F4s3AEaAdLjmgIR0DGvZ6tLcsUdX2UKGgGR0BxO5qqOtGNaAdLuWgIR0DGvaXZdv87dX2UKGgGR0Bxn135eqrBaAdLpmgIR0DGvadRR/EwdX2UKGgGR0ByPBrP+n63aAdLp2gIR0DGvaoKpkwwdX2UKGgGR0Bx/QH7gsK9aAdLkmgIR0DGvbSmwaBJdX2UKGgGR0ByiCYTj/+9aAdLrGgIR0DGvb01VHWjdX2UKGgGR0ByPTnuAqd6aAdLkWgIR0DGvdoJswcpdX2UKGgGR0ByD0ZXMhX9aAdLqWgIR0DGveKxZ+x4dX2UKGgGR0Bv+iOFQEZBaAdLj2gIR0DGvet9v0iAdX2UKGgGR0BxjGcf/3nIaAdLrGgIR0DGvfsMoc7ydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}