fedorn commited on
Commit
addcc64
·
1 Parent(s): 4d9bc5f

PPO MlpPolicy for LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 272.71 +/- 15.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2799ff5c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2799ff5cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2799ff5d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2799ff5e10>", "_build": "<function ActorCriticPolicy._build at 0x7f2799ff5ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2799ff5f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2799ff5fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2799ff6050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2799ff60e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2799ff6170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2799ff6200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2799ff6290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2799ff8b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685263519602203959, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Htr3ckkA9o9sMPvLdj740daw9MFBYvQAAAAAAAAAAsyY+vfZcIroPsTA23aeqMSqKbzmavFq1AACAPwAAgD+DkYO++IY8P0ItGz08xvi+cWglvt5MsT0AAAAAAAAAAM38Dzy4rqa5XnwrM1BiYy4wp9a7zbPNswAAgD8AAIA/mosbPbhZy7urYXa75DWCPG9eHD1wM129AACAPwAAgD9QfVm+/+YwP8m8jz2VKQq/LZClvgXVET4AAAAAAAAAAGaKjL3hr5A9CicTPrbRgr4vOPk9o/ncvAAAAAAAAAAAGhQvP1mwkL4Cjv0+wy34vX+QQL7VJno+AACAPwAAAAAttV8/cwuUvlrTqj4710+85V0OPDMSbz0AAIA/AACAPwNluj4sEdM+XKagvQHeh772aB8+2E3ivQAAAAAAAAAAk3hKPuIXiz6NvEW+/GyIviclMT0NR8O8AAAAAAAAAAAz/NM89sR3ujZ1ujKxRgixtM6NutJFRbMAAIA/AACAP03sNr2CSaE+/ZE2veRaob7RnCS7WfudugAAAAAAAAAA2ie3vS6Ahj9mTYy+YPE1v2XvBL6wAae9AAAAAAAAAACayds87NmLufIOhreChcCyMeM7OzmgnTYAAIA/AACAP6YaQ77df4g/SeaKvjtM875Mcay+cPlCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECLxiG34OMAWyUS92MAXSUR0CWNm1vES/TdX2UKGgGR0BzATvphWo4aAdL1mgIR0CWNnX8wYcedX2UKGgGR0BzaTiDM/yHaAdNDAFoCEdAljbp97Wuo3V9lChoBkdAcWOcH4XXRWgHS+5oCEdAljdQgkka/HV9lChoBkdAcRcDoQnQY2gHS85oCEdAljeAuVX3g3V9lChoBkdAcjCsv7FbV2gHS+VoCEdAljmNSMtK7XV9lChoBkdAchbugpSaVmgHS+doCEdAljofpQk5ZXV9lChoBkdAb8aTK1XvIGgHS8hoCEdAljsvTCtRvXV9lChoBkdAch5VFQVKw2gHTRoBaAhHQJY7YVdonKJ1fZQoaAZHQHFhw8r7O3VoB0vXaAhHQJY7dgG8mKJ1fZQoaAZHQHOhrEDQqqhoB0u0aAhHQJY9Nog3cYZ1fZQoaAZHQG9RJo0ygwpoB0vMaAhHQJY9Nrj5sTF1fZQoaAZHQHGq4czZYgdoB0vDaAhHQJY90g+yJKt1fZQoaAZHQG8qyflIVdpoB0vWaAhHQJY+Dg9/z8R1fZQoaAZHQHQ3eVTrE+BoB0vQaAhHQJY+HCrLhaV1fZQoaAZHQG/LqCQLeANoB0vvaAhHQJY+cUlAu7J1fZQoaAZHQHIgXfhuO0doB0v4aAhHQJY+pw6ySmt1fZQoaAZHQHDZGN3np0RoB0vHaAhHQJY+9/d69kB1fZQoaAZHQHEvZiqhlDpoB0vsaAhHQJZAp95Qgs91fZQoaAZHQG/QXvYvnKZoB0u5aAhHQJZCy6z3RHB1fZQoaAZHQHDQhoysS01oB0vmaAhHQJZDA2XLNfR1fZQoaAZHQHGK0M1CPZJoB0viaAhHQJZDgIqslsx1fZQoaAZHQHCuPszEaVFoB0vFaAhHQJZDoRK6Fuh1fZQoaAZHQHL/uOGTLW9oB01nAWgIR0CWRMP1ct5EdX2UKGgGR0By2SKsMiKSaAdL52gIR0CWRTHrhR64dX2UKGgGR0BxMznyNGViaAdL02gIR0CWRmdCmdiEdX2UKGgGR0BvGOPvKEFoaAdL4GgIR0CWRwakAPupdX2UKGgGR0BxfFfb9If9aAdL6mgIR0CWSHMPjGT+dX2UKGgGR0BxdaPaL4vfaAdL/GgIR0CWSRScbzbwdX2UKGgGR8BniQ+MZP2xaAdNzAFoCEdAlkpyZWq95HV9lChoBkdAcmErvb48EGgHTQkBaAhHQJZKsiliz9l1fZQoaAZHQHJNPitJWeZoB0vfaAhHQJZLI+5e7cx1fZQoaAZHQHNSnNs3yZtoB00LAWgIR0CWSzWtU4rCdX2UKGgGR0BzAsqpcX3yaAdNNAFoCEdAlkvLVrhzeXV9lChoBkdAcToBkZrHl2gHS8NoCEdAlkvgjY7JXHV9lChoBkdAcZe5tm+TNmgHS8NoCEdAlkwpWq94/3V9lChoBkdAcUxOLzf78GgHTToBaAhHQJZMMdNnGsF1fZQoaAZHQG7xnJ1aGHpoB0vXaAhHQJZNWK1og3d1fZQoaAZHQHET7k0aZQZoB0v0aAhHQJZNa4z7/GV1fZQoaAZHQHFEbC3w1BNoB0u+aAhHQJZNo/X5FgF1fZQoaAZHQHIKfBJqZc9oB0vgaAhHQJZN3N+so2J1fZQoaAZHQHD4eejEehhoB0vPaAhHQJZOaXOW0JF1fZQoaAZHQHCwHLzPKMhoB0u3aAhHQJZOjEXLvCx1fZQoaAZHQHAt3lwLmZFoB01xAWgIR0CWUGt4A0bcdX2UKGgGR0BxMTKFIuoQaAdLz2gIR0CWUJOgxrSFdX2UKGgGR0BwnjphWo3raAdLzWgIR0CWUNk6Lfk4dX2UKGgGR0ByExF+d9UkaAdL5WgIR0CWUYa3I+4cdX2UKGgGR0ByFDW/ag27aAdL5WgIR0CWUiPkq+ajdX2UKGgGR0BxTtXFLnLaaAdL32gIR0CWUl8IzFdcdX2UKGgGR0BxU9cQiA2AaAdNGgFoCEdAllK2rGR3eXV9lChoBkdAcbuMspXp4mgHTQIBaAhHQJZTJ90A93d1fZQoaAZHQHA0Z5u63ApoB0vSaAhHQJZTkAlv60p1fZQoaAZHQHGO3cclw99oB0vXaAhHQJZTpXQtz0Z1fZQoaAZHQHCfpqmCROloB0vQaAhHQJZUAa86FM91fZQoaAZHQHO0av/zasZoB0vqaAhHQJZUg6uGKyh1fZQoaAZHQHLLoPPLPldoB0vZaAhHQJZU53Roh6l1fZQoaAZHQGW3BJRO1v5oB02LAWgIR0CWVUcFQl8gdX2UKGgGR0ByfGh6By0baAdNCQFoCEdAllZkGqxTsXV9lChoBkdAco+PykKu0WgHS+loCEdAlldk52hZhnV9lChoBkdAcOxundfsu2gHS+hoCEdAlleIubqhUXV9lChoBkdAbpR4xDb8FmgHS+hoCEdAlliYPkJa7nV9lChoBkdAcaMHyVfNRmgHTQMBaAhHQJZYvy/bj951fZQoaAZHQHLIys4ku6FoB0vSaAhHQJZYvynUDuB1fZQoaAZHQHDBkwaisXBoB0u8aAhHQJZZVVyWAwx1fZQoaAZHQG08Pbfxc3VoB03EAWgIR0CWWWFfzBhydX2UKGgGR0ByP4K8cuJ2aAdLxWgIR0CWWYfBeokzdX2UKGgGR0Bw++LvTgEVaAdL/mgIR0CWWd3kgfU4dX2UKGgGR0BuzEDjin50aAdL6GgIR0CWWiW8AaNudX2UKGgGR0BwAJsnAqNIaAdL0WgIR0CWWkqYZ2pydX2UKGgGR0BzX/3lCCz1aAdL+mgIR0CWWkKs+3YudX2UKGgGR0BxlGtITXaraAdL1mgIR0CWWxxN7BwddX2UKGgGR0ByF8DZDiOvaAdL32gIR0CWW6/QSi/PdX2UKGgGR0Bwm19Vmz0IaAdLw2gIR0CWXAmUnogWdX2UKGgGR0ByfFcPe54GaAdNEwFoCEdAllxjI7vG63V9lChoBkdAccicMEzO5mgHS8BoCEdAllzNxIatLnV9lChoBkdAcd6g13t8eGgHS7BoCEdAll4DLOiWV3V9lChoBkdAb5HmL9/BnGgHS9ZoCEdAll5wpvxYrHV9lChoBkdAcXCLcbiqAGgHS/loCEdAll6HCCSRsHV9lChoBkdAb/Uy+HrQgWgHS9RoCEdAll6AxnFo+XV9lChoBkdAcdgAd4mkWWgHS9doCEdAll6Tg62fCnV9lChoBkdAcaj9IPK+z2gHS89oCEdAll9WJaaCtnV9lChoBkdAcy5GR3eN1mgHS8NoCEdAll9mlVLi/HV9lChoBkdAb+UP7N0NjWgHS9JoCEdAll/UyP+4snV9lChoBkdAcuQVxCIDYGgHS/hoCEdAll/+8oQWe3V9lChoBkdAcGdY+jdpI2gHS/hoCEdAlmC6vq1PWXV9lChoBkdAcoYBzV+ZxGgHS+JoCEdAlmFB9w3o93V9lChoBkdAceaclgMMJGgHTSgBaAhHQJZhcwPAfuF1fZQoaAZHQG87xvFWGRFoB0vZaAhHQJZiwuVX3g11fZQoaAZHQHGUyA6Mir1oB0vtaAhHQJZi4ORT0g91fZQoaAZHQHFZaujh1kloB0uxaAhHQJZjR37k4m11fZQoaAZHQG3nFmvnr6doB0vBaAhHQJZjWElE7XB1fZQoaAZHQG+qUJWvKU5oB0u7aAhHQJZjsZ88cMp1fZQoaAZHQHMFbypaRp1oB0vKaAhHQJZkDZPEbYN1fZQoaAZHQHExvACW/rVoB0vHaAhHQJZk1RCQcPx1fZQoaAZHQG4L49gWrOtoB0vDaAhHQJZlYtz0Yj11fZQoaAZHQHHjb6P8yetoB0vQaAhHQJZlnuAqd6N1fZQoaAZHQHLO7LyMDOloB0vnaAhHQJZl1I7Njb11fZQoaAZHQHEtiaAnUlRoB00YAWgIR0CWZkK1G9YfdX2UKGgGR0BwzCRvFWGRaAdLxWgIR0CWZvknCwbEdX2UKGgGR0Bw//0aqCHzaAdL6WgIR0CWZz0bLlmwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
mlp_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3038be579f83ecd12c5fa4d6aaf86bf24f0e13197fe30e2a9c8bb0b1f14f4a0d
3
+ size 146646
mlp_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
mlp_model/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2799ff5c60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2799ff5cf0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2799ff5d80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2799ff5e10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2799ff5ea0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2799ff5f30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2799ff5fc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2799ff6050>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2799ff60e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2799ff6170>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2799ff6200>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2799ff6290>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2799ff8b40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685263519602203959,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Htr3ckkA9o9sMPvLdj740daw9MFBYvQAAAAAAAAAAsyY+vfZcIroPsTA23aeqMSqKbzmavFq1AACAPwAAgD+DkYO++IY8P0ItGz08xvi+cWglvt5MsT0AAAAAAAAAAM38Dzy4rqa5XnwrM1BiYy4wp9a7zbPNswAAgD8AAIA/mosbPbhZy7urYXa75DWCPG9eHD1wM129AACAPwAAgD9QfVm+/+YwP8m8jz2VKQq/LZClvgXVET4AAAAAAAAAAGaKjL3hr5A9CicTPrbRgr4vOPk9o/ncvAAAAAAAAAAAGhQvP1mwkL4Cjv0+wy34vX+QQL7VJno+AACAPwAAAAAttV8/cwuUvlrTqj4710+85V0OPDMSbz0AAIA/AACAPwNluj4sEdM+XKagvQHeh772aB8+2E3ivQAAAAAAAAAAk3hKPuIXiz6NvEW+/GyIviclMT0NR8O8AAAAAAAAAAAz/NM89sR3ujZ1ujKxRgixtM6NutJFRbMAAIA/AACAP03sNr2CSaE+/ZE2veRaob7RnCS7WfudugAAAAAAAAAA2ie3vS6Ahj9mTYy+YPE1v2XvBL6wAae9AAAAAAAAAACayds87NmLufIOhreChcCyMeM7OzmgnTYAAIA/AACAP6YaQ77df4g/SeaKvjtM875Mcay+cPlCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECLxiG34OMAWyUS92MAXSUR0CWNm1vES/TdX2UKGgGR0BzATvphWo4aAdL1mgIR0CWNnX8wYcedX2UKGgGR0BzaTiDM/yHaAdNDAFoCEdAljbp97Wuo3V9lChoBkdAcWOcH4XXRWgHS+5oCEdAljdQgkka/HV9lChoBkdAcRcDoQnQY2gHS85oCEdAljeAuVX3g3V9lChoBkdAcjCsv7FbV2gHS+VoCEdAljmNSMtK7XV9lChoBkdAchbugpSaVmgHS+doCEdAljofpQk5ZXV9lChoBkdAb8aTK1XvIGgHS8hoCEdAljsvTCtRvXV9lChoBkdAch5VFQVKw2gHTRoBaAhHQJY7YVdonKJ1fZQoaAZHQHFhw8r7O3VoB0vXaAhHQJY7dgG8mKJ1fZQoaAZHQHOhrEDQqqhoB0u0aAhHQJY9Nog3cYZ1fZQoaAZHQG9RJo0ygwpoB0vMaAhHQJY9Nrj5sTF1fZQoaAZHQHGq4czZYgdoB0vDaAhHQJY90g+yJKt1fZQoaAZHQG8qyflIVdpoB0vWaAhHQJY+Dg9/z8R1fZQoaAZHQHQ3eVTrE+BoB0vQaAhHQJY+HCrLhaV1fZQoaAZHQG/LqCQLeANoB0vvaAhHQJY+cUlAu7J1fZQoaAZHQHIgXfhuO0doB0v4aAhHQJY+pw6ySmt1fZQoaAZHQHDZGN3np0RoB0vHaAhHQJY+9/d69kB1fZQoaAZHQHEvZiqhlDpoB0vsaAhHQJZAp95Qgs91fZQoaAZHQG/QXvYvnKZoB0u5aAhHQJZCy6z3RHB1fZQoaAZHQHDQhoysS01oB0vmaAhHQJZDA2XLNfR1fZQoaAZHQHGK0M1CPZJoB0viaAhHQJZDgIqslsx1fZQoaAZHQHCuPszEaVFoB0vFaAhHQJZDoRK6Fuh1fZQoaAZHQHL/uOGTLW9oB01nAWgIR0CWRMP1ct5EdX2UKGgGR0By2SKsMiKSaAdL52gIR0CWRTHrhR64dX2UKGgGR0BxMznyNGViaAdL02gIR0CWRmdCmdiEdX2UKGgGR0BvGOPvKEFoaAdL4GgIR0CWRwakAPupdX2UKGgGR0BxfFfb9If9aAdL6mgIR0CWSHMPjGT+dX2UKGgGR0BxdaPaL4vfaAdL/GgIR0CWSRScbzbwdX2UKGgGR8BniQ+MZP2xaAdNzAFoCEdAlkpyZWq95HV9lChoBkdAcmErvb48EGgHTQkBaAhHQJZKsiliz9l1fZQoaAZHQHJNPitJWeZoB0vfaAhHQJZLI+5e7cx1fZQoaAZHQHNSnNs3yZtoB00LAWgIR0CWSzWtU4rCdX2UKGgGR0BzAsqpcX3yaAdNNAFoCEdAlkvLVrhzeXV9lChoBkdAcToBkZrHl2gHS8NoCEdAlkvgjY7JXHV9lChoBkdAcZe5tm+TNmgHS8NoCEdAlkwpWq94/3V9lChoBkdAcUxOLzf78GgHTToBaAhHQJZMMdNnGsF1fZQoaAZHQG7xnJ1aGHpoB0vXaAhHQJZNWK1og3d1fZQoaAZHQHET7k0aZQZoB0v0aAhHQJZNa4z7/GV1fZQoaAZHQHFEbC3w1BNoB0u+aAhHQJZNo/X5FgF1fZQoaAZHQHIKfBJqZc9oB0vgaAhHQJZN3N+so2J1fZQoaAZHQHD4eejEehhoB0vPaAhHQJZOaXOW0JF1fZQoaAZHQHCwHLzPKMhoB0u3aAhHQJZOjEXLvCx1fZQoaAZHQHAt3lwLmZFoB01xAWgIR0CWUGt4A0bcdX2UKGgGR0BxMTKFIuoQaAdLz2gIR0CWUJOgxrSFdX2UKGgGR0BwnjphWo3raAdLzWgIR0CWUNk6Lfk4dX2UKGgGR0ByExF+d9UkaAdL5WgIR0CWUYa3I+4cdX2UKGgGR0ByFDW/ag27aAdL5WgIR0CWUiPkq+ajdX2UKGgGR0BxTtXFLnLaaAdL32gIR0CWUl8IzFdcdX2UKGgGR0BxU9cQiA2AaAdNGgFoCEdAllK2rGR3eXV9lChoBkdAcbuMspXp4mgHTQIBaAhHQJZTJ90A93d1fZQoaAZHQHA0Z5u63ApoB0vSaAhHQJZTkAlv60p1fZQoaAZHQHGO3cclw99oB0vXaAhHQJZTpXQtz0Z1fZQoaAZHQHCfpqmCROloB0vQaAhHQJZUAa86FM91fZQoaAZHQHO0av/zasZoB0vqaAhHQJZUg6uGKyh1fZQoaAZHQHLLoPPLPldoB0vZaAhHQJZU53Roh6l1fZQoaAZHQGW3BJRO1v5oB02LAWgIR0CWVUcFQl8gdX2UKGgGR0ByfGh6By0baAdNCQFoCEdAllZkGqxTsXV9lChoBkdAco+PykKu0WgHS+loCEdAlldk52hZhnV9lChoBkdAcOxundfsu2gHS+hoCEdAlleIubqhUXV9lChoBkdAbpR4xDb8FmgHS+hoCEdAlliYPkJa7nV9lChoBkdAcaMHyVfNRmgHTQMBaAhHQJZYvy/bj951fZQoaAZHQHLIys4ku6FoB0vSaAhHQJZYvynUDuB1fZQoaAZHQHDBkwaisXBoB0u8aAhHQJZZVVyWAwx1fZQoaAZHQG08Pbfxc3VoB03EAWgIR0CWWWFfzBhydX2UKGgGR0ByP4K8cuJ2aAdLxWgIR0CWWYfBeokzdX2UKGgGR0Bw++LvTgEVaAdL/mgIR0CWWd3kgfU4dX2UKGgGR0BuzEDjin50aAdL6GgIR0CWWiW8AaNudX2UKGgGR0BwAJsnAqNIaAdL0WgIR0CWWkqYZ2pydX2UKGgGR0BzX/3lCCz1aAdL+mgIR0CWWkKs+3YudX2UKGgGR0BxlGtITXaraAdL1mgIR0CWWxxN7BwddX2UKGgGR0ByF8DZDiOvaAdL32gIR0CWW6/QSi/PdX2UKGgGR0Bwm19Vmz0IaAdLw2gIR0CWXAmUnogWdX2UKGgGR0ByfFcPe54GaAdNEwFoCEdAllxjI7vG63V9lChoBkdAccicMEzO5mgHS8BoCEdAllzNxIatLnV9lChoBkdAcd6g13t8eGgHS7BoCEdAll4DLOiWV3V9lChoBkdAb5HmL9/BnGgHS9ZoCEdAll5wpvxYrHV9lChoBkdAcXCLcbiqAGgHS/loCEdAll6HCCSRsHV9lChoBkdAb/Uy+HrQgWgHS9RoCEdAll6AxnFo+XV9lChoBkdAcdgAd4mkWWgHS9doCEdAll6Tg62fCnV9lChoBkdAcaj9IPK+z2gHS89oCEdAll9WJaaCtnV9lChoBkdAcy5GR3eN1mgHS8NoCEdAll9mlVLi/HV9lChoBkdAb+UP7N0NjWgHS9JoCEdAll/UyP+4snV9lChoBkdAcuQVxCIDYGgHS/hoCEdAll/+8oQWe3V9lChoBkdAcGdY+jdpI2gHS/hoCEdAlmC6vq1PWXV9lChoBkdAcoYBzV+ZxGgHS+JoCEdAlmFB9w3o93V9lChoBkdAceaclgMMJGgHTSgBaAhHQJZhcwPAfuF1fZQoaAZHQG87xvFWGRFoB0vZaAhHQJZiwuVX3g11fZQoaAZHQHGUyA6Mir1oB0vtaAhHQJZi4ORT0g91fZQoaAZHQHFZaujh1kloB0uxaAhHQJZjR37k4m11fZQoaAZHQG3nFmvnr6doB0vBaAhHQJZjWElE7XB1fZQoaAZHQG+qUJWvKU5oB0u7aAhHQJZjsZ88cMp1fZQoaAZHQHMFbypaRp1oB0vKaAhHQJZkDZPEbYN1fZQoaAZHQHExvACW/rVoB0vHaAhHQJZk1RCQcPx1fZQoaAZHQG4L49gWrOtoB0vDaAhHQJZlYtz0Yj11fZQoaAZHQHHjb6P8yetoB0vQaAhHQJZlnuAqd6N1fZQoaAZHQHLO7LyMDOloB0vnaAhHQJZl1I7Njb11fZQoaAZHQHEtiaAnUlRoB00YAWgIR0CWZkK1G9YfdX2UKGgGR0BwzCRvFWGRaAdLxWgIR0CWZvknCwbEdX2UKGgGR0Bw//0aqCHzaAdL6WgIR0CWZz0bLlmwdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
mlp_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c18a38f7fe7cc4563c26872f56bee69f8215db1358bd8583b81ac8261eb74e65
3
+ size 87929
mlp_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14c00af00e501fb92088b149249a15d5b306dad5a12cfb49c64de9afc81b685
3
+ size 43329
mlp_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
mlp_model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (156 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.7108853655076, "std_reward": 15.447135152468112, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-28T10:03:53.189364"}