PPO MlpPolicy for LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- mlp_model.zip +3 -0
- mlp_model/_stable_baselines3_version +1 -0
- mlp_model/data +99 -0
- mlp_model/policy.optimizer.pth +3 -0
- mlp_model/policy.pth +3 -0
- mlp_model/pytorch_variables.pth +3 -0
- mlp_model/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.71 +/- 15.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2799ff5c60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2799ff5cf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2799ff5d80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2799ff5e10>", "_build": "<function ActorCriticPolicy._build at 0x7f2799ff5ea0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2799ff5f30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2799ff5fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2799ff6050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2799ff60e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2799ff6170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2799ff6200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2799ff6290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2799ff8b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685263519602203959, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Htr3ckkA9o9sMPvLdj740daw9MFBYvQAAAAAAAAAAsyY+vfZcIroPsTA23aeqMSqKbzmavFq1AACAPwAAgD+DkYO++IY8P0ItGz08xvi+cWglvt5MsT0AAAAAAAAAAM38Dzy4rqa5XnwrM1BiYy4wp9a7zbPNswAAgD8AAIA/mosbPbhZy7urYXa75DWCPG9eHD1wM129AACAPwAAgD9QfVm+/+YwP8m8jz2VKQq/LZClvgXVET4AAAAAAAAAAGaKjL3hr5A9CicTPrbRgr4vOPk9o/ncvAAAAAAAAAAAGhQvP1mwkL4Cjv0+wy34vX+QQL7VJno+AACAPwAAAAAttV8/cwuUvlrTqj4710+85V0OPDMSbz0AAIA/AACAPwNluj4sEdM+XKagvQHeh772aB8+2E3ivQAAAAAAAAAAk3hKPuIXiz6NvEW+/GyIviclMT0NR8O8AAAAAAAAAAAz/NM89sR3ujZ1ujKxRgixtM6NutJFRbMAAIA/AACAP03sNr2CSaE+/ZE2veRaob7RnCS7WfudugAAAAAAAAAA2ie3vS6Ahj9mTYy+YPE1v2XvBL6wAae9AAAAAAAAAACayds87NmLufIOhreChcCyMeM7OzmgnTYAAIA/AACAP6YaQ77df4g/SeaKvjtM875Mcay+cPlCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECLxiG34OMAWyUS92MAXSUR0CWNm1vES/TdX2UKGgGR0BzATvphWo4aAdL1mgIR0CWNnX8wYcedX2UKGgGR0BzaTiDM/yHaAdNDAFoCEdAljbp97Wuo3V9lChoBkdAcWOcH4XXRWgHS+5oCEdAljdQgkka/HV9lChoBkdAcRcDoQnQY2gHS85oCEdAljeAuVX3g3V9lChoBkdAcjCsv7FbV2gHS+VoCEdAljmNSMtK7XV9lChoBkdAchbugpSaVmgHS+doCEdAljofpQk5ZXV9lChoBkdAb8aTK1XvIGgHS8hoCEdAljsvTCtRvXV9lChoBkdAch5VFQVKw2gHTRoBaAhHQJY7YVdonKJ1fZQoaAZHQHFhw8r7O3VoB0vXaAhHQJY7dgG8mKJ1fZQoaAZHQHOhrEDQqqhoB0u0aAhHQJY9Nog3cYZ1fZQoaAZHQG9RJo0ygwpoB0vMaAhHQJY9Nrj5sTF1fZQoaAZHQHGq4czZYgdoB0vDaAhHQJY90g+yJKt1fZQoaAZHQG8qyflIVdpoB0vWaAhHQJY+Dg9/z8R1fZQoaAZHQHQ3eVTrE+BoB0vQaAhHQJY+HCrLhaV1fZQoaAZHQG/LqCQLeANoB0vvaAhHQJY+cUlAu7J1fZQoaAZHQHIgXfhuO0doB0v4aAhHQJY+pw6ySmt1fZQoaAZHQHDZGN3np0RoB0vHaAhHQJY+9/d69kB1fZQoaAZHQHEvZiqhlDpoB0vsaAhHQJZAp95Qgs91fZQoaAZHQG/QXvYvnKZoB0u5aAhHQJZCy6z3RHB1fZQoaAZHQHDQhoysS01oB0vmaAhHQJZDA2XLNfR1fZQoaAZHQHGK0M1CPZJoB0viaAhHQJZDgIqslsx1fZQoaAZHQHCuPszEaVFoB0vFaAhHQJZDoRK6Fuh1fZQoaAZHQHL/uOGTLW9oB01nAWgIR0CWRMP1ct5EdX2UKGgGR0By2SKsMiKSaAdL52gIR0CWRTHrhR64dX2UKGgGR0BxMznyNGViaAdL02gIR0CWRmdCmdiEdX2UKGgGR0BvGOPvKEFoaAdL4GgIR0CWRwakAPupdX2UKGgGR0BxfFfb9If9aAdL6mgIR0CWSHMPjGT+dX2UKGgGR0BxdaPaL4vfaAdL/GgIR0CWSRScbzbwdX2UKGgGR8BniQ+MZP2xaAdNzAFoCEdAlkpyZWq95HV9lChoBkdAcmErvb48EGgHTQkBaAhHQJZKsiliz9l1fZQoaAZHQHJNPitJWeZoB0vfaAhHQJZLI+5e7cx1fZQoaAZHQHNSnNs3yZtoB00LAWgIR0CWSzWtU4rCdX2UKGgGR0BzAsqpcX3yaAdNNAFoCEdAlkvLVrhzeXV9lChoBkdAcToBkZrHl2gHS8NoCEdAlkvgjY7JXHV9lChoBkdAcZe5tm+TNmgHS8NoCEdAlkwpWq94/3V9lChoBkdAcUxOLzf78GgHTToBaAhHQJZMMdNnGsF1fZQoaAZHQG7xnJ1aGHpoB0vXaAhHQJZNWK1og3d1fZQoaAZHQHET7k0aZQZoB0v0aAhHQJZNa4z7/GV1fZQoaAZHQHFEbC3w1BNoB0u+aAhHQJZNo/X5FgF1fZQoaAZHQHIKfBJqZc9oB0vgaAhHQJZN3N+so2J1fZQoaAZHQHD4eejEehhoB0vPaAhHQJZOaXOW0JF1fZQoaAZHQHCwHLzPKMhoB0u3aAhHQJZOjEXLvCx1fZQoaAZHQHAt3lwLmZFoB01xAWgIR0CWUGt4A0bcdX2UKGgGR0BxMTKFIuoQaAdLz2gIR0CWUJOgxrSFdX2UKGgGR0BwnjphWo3raAdLzWgIR0CWUNk6Lfk4dX2UKGgGR0ByExF+d9UkaAdL5WgIR0CWUYa3I+4cdX2UKGgGR0ByFDW/ag27aAdL5WgIR0CWUiPkq+ajdX2UKGgGR0BxTtXFLnLaaAdL32gIR0CWUl8IzFdcdX2UKGgGR0BxU9cQiA2AaAdNGgFoCEdAllK2rGR3eXV9lChoBkdAcbuMspXp4mgHTQIBaAhHQJZTJ90A93d1fZQoaAZHQHA0Z5u63ApoB0vSaAhHQJZTkAlv60p1fZQoaAZHQHGO3cclw99oB0vXaAhHQJZTpXQtz0Z1fZQoaAZHQHCfpqmCROloB0vQaAhHQJZUAa86FM91fZQoaAZHQHO0av/zasZoB0vqaAhHQJZUg6uGKyh1fZQoaAZHQHLLoPPLPldoB0vZaAhHQJZU53Roh6l1fZQoaAZHQGW3BJRO1v5oB02LAWgIR0CWVUcFQl8gdX2UKGgGR0ByfGh6By0baAdNCQFoCEdAllZkGqxTsXV9lChoBkdAco+PykKu0WgHS+loCEdAlldk52hZhnV9lChoBkdAcOxundfsu2gHS+hoCEdAlleIubqhUXV9lChoBkdAbpR4xDb8FmgHS+hoCEdAlliYPkJa7nV9lChoBkdAcaMHyVfNRmgHTQMBaAhHQJZYvy/bj951fZQoaAZHQHLIys4ku6FoB0vSaAhHQJZYvynUDuB1fZQoaAZHQHDBkwaisXBoB0u8aAhHQJZZVVyWAwx1fZQoaAZHQG08Pbfxc3VoB03EAWgIR0CWWWFfzBhydX2UKGgGR0ByP4K8cuJ2aAdLxWgIR0CWWYfBeokzdX2UKGgGR0Bw++LvTgEVaAdL/mgIR0CWWd3kgfU4dX2UKGgGR0BuzEDjin50aAdL6GgIR0CWWiW8AaNudX2UKGgGR0BwAJsnAqNIaAdL0WgIR0CWWkqYZ2pydX2UKGgGR0BzX/3lCCz1aAdL+mgIR0CWWkKs+3YudX2UKGgGR0BxlGtITXaraAdL1mgIR0CWWxxN7BwddX2UKGgGR0ByF8DZDiOvaAdL32gIR0CWW6/QSi/PdX2UKGgGR0Bwm19Vmz0IaAdLw2gIR0CWXAmUnogWdX2UKGgGR0ByfFcPe54GaAdNEwFoCEdAllxjI7vG63V9lChoBkdAccicMEzO5mgHS8BoCEdAllzNxIatLnV9lChoBkdAcd6g13t8eGgHS7BoCEdAll4DLOiWV3V9lChoBkdAb5HmL9/BnGgHS9ZoCEdAll5wpvxYrHV9lChoBkdAcXCLcbiqAGgHS/loCEdAll6HCCSRsHV9lChoBkdAb/Uy+HrQgWgHS9RoCEdAll6AxnFo+XV9lChoBkdAcdgAd4mkWWgHS9doCEdAll6Tg62fCnV9lChoBkdAcaj9IPK+z2gHS89oCEdAll9WJaaCtnV9lChoBkdAcy5GR3eN1mgHS8NoCEdAll9mlVLi/HV9lChoBkdAb+UP7N0NjWgHS9JoCEdAll/UyP+4snV9lChoBkdAcuQVxCIDYGgHS/hoCEdAll/+8oQWe3V9lChoBkdAcGdY+jdpI2gHS/hoCEdAlmC6vq1PWXV9lChoBkdAcoYBzV+ZxGgHS+JoCEdAlmFB9w3o93V9lChoBkdAceaclgMMJGgHTSgBaAhHQJZhcwPAfuF1fZQoaAZHQG87xvFWGRFoB0vZaAhHQJZiwuVX3g11fZQoaAZHQHGUyA6Mir1oB0vtaAhHQJZi4ORT0g91fZQoaAZHQHFZaujh1kloB0uxaAhHQJZjR37k4m11fZQoaAZHQG3nFmvnr6doB0vBaAhHQJZjWElE7XB1fZQoaAZHQG+qUJWvKU5oB0u7aAhHQJZjsZ88cMp1fZQoaAZHQHMFbypaRp1oB0vKaAhHQJZkDZPEbYN1fZQoaAZHQHExvACW/rVoB0vHaAhHQJZk1RCQcPx1fZQoaAZHQG4L49gWrOtoB0vDaAhHQJZlYtz0Yj11fZQoaAZHQHHjb6P8yetoB0vQaAhHQJZlnuAqd6N1fZQoaAZHQHLO7LyMDOloB0vnaAhHQJZl1I7Njb11fZQoaAZHQHEtiaAnUlRoB00YAWgIR0CWZkK1G9YfdX2UKGgGR0BwzCRvFWGRaAdLxWgIR0CWZvknCwbEdX2UKGgGR0Bw//0aqCHzaAdL6WgIR0CWZz0bLlmwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
mlp_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3038be579f83ecd12c5fa4d6aaf86bf24f0e13197fe30e2a9c8bb0b1f14f4a0d
|
3 |
+
size 146646
|
mlp_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
mlp_model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2799ff5c60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2799ff5cf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2799ff5d80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2799ff5e10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2799ff5ea0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2799ff5f30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2799ff5fc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2799ff6050>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2799ff60e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2799ff6170>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2799ff6200>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2799ff6290>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2799ff8b40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685263519602203959,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3Htr3ckkA9o9sMPvLdj740daw9MFBYvQAAAAAAAAAAsyY+vfZcIroPsTA23aeqMSqKbzmavFq1AACAPwAAgD+DkYO++IY8P0ItGz08xvi+cWglvt5MsT0AAAAAAAAAAM38Dzy4rqa5XnwrM1BiYy4wp9a7zbPNswAAgD8AAIA/mosbPbhZy7urYXa75DWCPG9eHD1wM129AACAPwAAgD9QfVm+/+YwP8m8jz2VKQq/LZClvgXVET4AAAAAAAAAAGaKjL3hr5A9CicTPrbRgr4vOPk9o/ncvAAAAAAAAAAAGhQvP1mwkL4Cjv0+wy34vX+QQL7VJno+AACAPwAAAAAttV8/cwuUvlrTqj4710+85V0OPDMSbz0AAIA/AACAPwNluj4sEdM+XKagvQHeh772aB8+2E3ivQAAAAAAAAAAk3hKPuIXiz6NvEW+/GyIviclMT0NR8O8AAAAAAAAAAAz/NM89sR3ujZ1ujKxRgixtM6NutJFRbMAAIA/AACAP03sNr2CSaE+/ZE2veRaob7RnCS7WfudugAAAAAAAAAA2ie3vS6Ahj9mTYy+YPE1v2XvBL6wAae9AAAAAAAAAACayds87NmLufIOhreChcCyMeM7OzmgnTYAAIA/AACAP6YaQ77df4g/SeaKvjtM875Mcay+cPlCvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECLxiG34OMAWyUS92MAXSUR0CWNm1vES/TdX2UKGgGR0BzATvphWo4aAdL1mgIR0CWNnX8wYcedX2UKGgGR0BzaTiDM/yHaAdNDAFoCEdAljbp97Wuo3V9lChoBkdAcWOcH4XXRWgHS+5oCEdAljdQgkka/HV9lChoBkdAcRcDoQnQY2gHS85oCEdAljeAuVX3g3V9lChoBkdAcjCsv7FbV2gHS+VoCEdAljmNSMtK7XV9lChoBkdAchbugpSaVmgHS+doCEdAljofpQk5ZXV9lChoBkdAb8aTK1XvIGgHS8hoCEdAljsvTCtRvXV9lChoBkdAch5VFQVKw2gHTRoBaAhHQJY7YVdonKJ1fZQoaAZHQHFhw8r7O3VoB0vXaAhHQJY7dgG8mKJ1fZQoaAZHQHOhrEDQqqhoB0u0aAhHQJY9Nog3cYZ1fZQoaAZHQG9RJo0ygwpoB0vMaAhHQJY9Nrj5sTF1fZQoaAZHQHGq4czZYgdoB0vDaAhHQJY90g+yJKt1fZQoaAZHQG8qyflIVdpoB0vWaAhHQJY+Dg9/z8R1fZQoaAZHQHQ3eVTrE+BoB0vQaAhHQJY+HCrLhaV1fZQoaAZHQG/LqCQLeANoB0vvaAhHQJY+cUlAu7J1fZQoaAZHQHIgXfhuO0doB0v4aAhHQJY+pw6ySmt1fZQoaAZHQHDZGN3np0RoB0vHaAhHQJY+9/d69kB1fZQoaAZHQHEvZiqhlDpoB0vsaAhHQJZAp95Qgs91fZQoaAZHQG/QXvYvnKZoB0u5aAhHQJZCy6z3RHB1fZQoaAZHQHDQhoysS01oB0vmaAhHQJZDA2XLNfR1fZQoaAZHQHGK0M1CPZJoB0viaAhHQJZDgIqslsx1fZQoaAZHQHCuPszEaVFoB0vFaAhHQJZDoRK6Fuh1fZQoaAZHQHL/uOGTLW9oB01nAWgIR0CWRMP1ct5EdX2UKGgGR0By2SKsMiKSaAdL52gIR0CWRTHrhR64dX2UKGgGR0BxMznyNGViaAdL02gIR0CWRmdCmdiEdX2UKGgGR0BvGOPvKEFoaAdL4GgIR0CWRwakAPupdX2UKGgGR0BxfFfb9If9aAdL6mgIR0CWSHMPjGT+dX2UKGgGR0BxdaPaL4vfaAdL/GgIR0CWSRScbzbwdX2UKGgGR8BniQ+MZP2xaAdNzAFoCEdAlkpyZWq95HV9lChoBkdAcmErvb48EGgHTQkBaAhHQJZKsiliz9l1fZQoaAZHQHJNPitJWeZoB0vfaAhHQJZLI+5e7cx1fZQoaAZHQHNSnNs3yZtoB00LAWgIR0CWSzWtU4rCdX2UKGgGR0BzAsqpcX3yaAdNNAFoCEdAlkvLVrhzeXV9lChoBkdAcToBkZrHl2gHS8NoCEdAlkvgjY7JXHV9lChoBkdAcZe5tm+TNmgHS8NoCEdAlkwpWq94/3V9lChoBkdAcUxOLzf78GgHTToBaAhHQJZMMdNnGsF1fZQoaAZHQG7xnJ1aGHpoB0vXaAhHQJZNWK1og3d1fZQoaAZHQHET7k0aZQZoB0v0aAhHQJZNa4z7/GV1fZQoaAZHQHFEbC3w1BNoB0u+aAhHQJZNo/X5FgF1fZQoaAZHQHIKfBJqZc9oB0vgaAhHQJZN3N+so2J1fZQoaAZHQHD4eejEehhoB0vPaAhHQJZOaXOW0JF1fZQoaAZHQHCwHLzPKMhoB0u3aAhHQJZOjEXLvCx1fZQoaAZHQHAt3lwLmZFoB01xAWgIR0CWUGt4A0bcdX2UKGgGR0BxMTKFIuoQaAdLz2gIR0CWUJOgxrSFdX2UKGgGR0BwnjphWo3raAdLzWgIR0CWUNk6Lfk4dX2UKGgGR0ByExF+d9UkaAdL5WgIR0CWUYa3I+4cdX2UKGgGR0ByFDW/ag27aAdL5WgIR0CWUiPkq+ajdX2UKGgGR0BxTtXFLnLaaAdL32gIR0CWUl8IzFdcdX2UKGgGR0BxU9cQiA2AaAdNGgFoCEdAllK2rGR3eXV9lChoBkdAcbuMspXp4mgHTQIBaAhHQJZTJ90A93d1fZQoaAZHQHA0Z5u63ApoB0vSaAhHQJZTkAlv60p1fZQoaAZHQHGO3cclw99oB0vXaAhHQJZTpXQtz0Z1fZQoaAZHQHCfpqmCROloB0vQaAhHQJZUAa86FM91fZQoaAZHQHO0av/zasZoB0vqaAhHQJZUg6uGKyh1fZQoaAZHQHLLoPPLPldoB0vZaAhHQJZU53Roh6l1fZQoaAZHQGW3BJRO1v5oB02LAWgIR0CWVUcFQl8gdX2UKGgGR0ByfGh6By0baAdNCQFoCEdAllZkGqxTsXV9lChoBkdAco+PykKu0WgHS+loCEdAlldk52hZhnV9lChoBkdAcOxundfsu2gHS+hoCEdAlleIubqhUXV9lChoBkdAbpR4xDb8FmgHS+hoCEdAlliYPkJa7nV9lChoBkdAcaMHyVfNRmgHTQMBaAhHQJZYvy/bj951fZQoaAZHQHLIys4ku6FoB0vSaAhHQJZYvynUDuB1fZQoaAZHQHDBkwaisXBoB0u8aAhHQJZZVVyWAwx1fZQoaAZHQG08Pbfxc3VoB03EAWgIR0CWWWFfzBhydX2UKGgGR0ByP4K8cuJ2aAdLxWgIR0CWWYfBeokzdX2UKGgGR0Bw++LvTgEVaAdL/mgIR0CWWd3kgfU4dX2UKGgGR0BuzEDjin50aAdL6GgIR0CWWiW8AaNudX2UKGgGR0BwAJsnAqNIaAdL0WgIR0CWWkqYZ2pydX2UKGgGR0BzX/3lCCz1aAdL+mgIR0CWWkKs+3YudX2UKGgGR0BxlGtITXaraAdL1mgIR0CWWxxN7BwddX2UKGgGR0ByF8DZDiOvaAdL32gIR0CWW6/QSi/PdX2UKGgGR0Bwm19Vmz0IaAdLw2gIR0CWXAmUnogWdX2UKGgGR0ByfFcPe54GaAdNEwFoCEdAllxjI7vG63V9lChoBkdAccicMEzO5mgHS8BoCEdAllzNxIatLnV9lChoBkdAcd6g13t8eGgHS7BoCEdAll4DLOiWV3V9lChoBkdAb5HmL9/BnGgHS9ZoCEdAll5wpvxYrHV9lChoBkdAcXCLcbiqAGgHS/loCEdAll6HCCSRsHV9lChoBkdAb/Uy+HrQgWgHS9RoCEdAll6AxnFo+XV9lChoBkdAcdgAd4mkWWgHS9doCEdAll6Tg62fCnV9lChoBkdAcaj9IPK+z2gHS89oCEdAll9WJaaCtnV9lChoBkdAcy5GR3eN1mgHS8NoCEdAll9mlVLi/HV9lChoBkdAb+UP7N0NjWgHS9JoCEdAll/UyP+4snV9lChoBkdAcuQVxCIDYGgHS/hoCEdAll/+8oQWe3V9lChoBkdAcGdY+jdpI2gHS/hoCEdAlmC6vq1PWXV9lChoBkdAcoYBzV+ZxGgHS+JoCEdAlmFB9w3o93V9lChoBkdAceaclgMMJGgHTSgBaAhHQJZhcwPAfuF1fZQoaAZHQG87xvFWGRFoB0vZaAhHQJZiwuVX3g11fZQoaAZHQHGUyA6Mir1oB0vtaAhHQJZi4ORT0g91fZQoaAZHQHFZaujh1kloB0uxaAhHQJZjR37k4m11fZQoaAZHQG3nFmvnr6doB0vBaAhHQJZjWElE7XB1fZQoaAZHQG+qUJWvKU5oB0u7aAhHQJZjsZ88cMp1fZQoaAZHQHMFbypaRp1oB0vKaAhHQJZkDZPEbYN1fZQoaAZHQHExvACW/rVoB0vHaAhHQJZk1RCQcPx1fZQoaAZHQG4L49gWrOtoB0vDaAhHQJZlYtz0Yj11fZQoaAZHQHHjb6P8yetoB0vQaAhHQJZlnuAqd6N1fZQoaAZHQHLO7LyMDOloB0vnaAhHQJZl1I7Njb11fZQoaAZHQHEtiaAnUlRoB00YAWgIR0CWZkK1G9YfdX2UKGgGR0BwzCRvFWGRaAdLxWgIR0CWZvknCwbEdX2UKGgGR0Bw//0aqCHzaAdL6WgIR0CWZz0bLlmwdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
mlp_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c18a38f7fe7cc4563c26872f56bee69f8215db1358bd8583b81ac8261eb74e65
|
3 |
+
size 87929
|
mlp_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b14c00af00e501fb92088b149249a15d5b306dad5a12cfb49c64de9afc81b685
|
3 |
+
size 43329
|
mlp_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
mlp_model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.7108853655076, "std_reward": 15.447135152468112, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-28T10:03:53.189364"}
|