feipengma
commited on
Commit
•
f1298e6
1
Parent(s):
47f5163
initialize wemm
Browse files- __init__.py +0 -0
- config.json +430 -0
- configuration_connector.py +83 -0
- configuration_downsampler.py +27 -0
- configuration_internlm2.py +151 -0
- configuration_projector.py +23 -0
- configuration_vision.py +38 -0
- configuration_wemm.py +70 -0
- connector.py +720 -0
- image_processor.py +657 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_downsampler.py +62 -0
- modeling_internlm2.py +1494 -0
- modeling_projector.py +51 -0
- modeling_wemm.py +479 -0
- special_tokens_map.json +6 -0
- tokenization_internlm2.py +236 -0
- tokenization_internlm2_fast.py +214 -0
- tokenizer.model +3 -0
- tokenizer_config.json +90 -0
- vision_model.py +728 -0
__init__.py
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoConfig": "configuration_wemm.WeMMConfig",
|
4 |
+
"AutoModel": "modeling_wemm.WemmForConditionalGeneration"
|
5 |
+
},
|
6 |
+
"architectures": [
|
7 |
+
"WemmForConditionalGeneration"
|
8 |
+
],
|
9 |
+
"connector_config": {
|
10 |
+
"_name_or_path": "",
|
11 |
+
"add_cross_attention": false,
|
12 |
+
"architectures": null,
|
13 |
+
"attention_dropout": 0.0,
|
14 |
+
"bad_words_ids": null,
|
15 |
+
"begin_suppress_tokens": null,
|
16 |
+
"bos_token_id": null,
|
17 |
+
"chunk_size_feed_forward": 0,
|
18 |
+
"cross_attention_hidden_size": null,
|
19 |
+
"decoder_start_token_id": null,
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"early_stopping": false,
|
23 |
+
"encoder_no_repeat_ngram_size": 0,
|
24 |
+
"eos_token_id": null,
|
25 |
+
"exponential_decay_length_penalty": null,
|
26 |
+
"finetuning_task": null,
|
27 |
+
"forced_bos_token_id": null,
|
28 |
+
"forced_eos_token_id": null,
|
29 |
+
"hidden_act": "silu",
|
30 |
+
"hidden_size": 4096,
|
31 |
+
"id2label": {
|
32 |
+
"0": "LABEL_0",
|
33 |
+
"1": "LABEL_1"
|
34 |
+
},
|
35 |
+
"integrate_sub_images": null,
|
36 |
+
"intermediate_size": 14336,
|
37 |
+
"is_decoder": false,
|
38 |
+
"is_encoder_decoder": false,
|
39 |
+
"label2id": {
|
40 |
+
"LABEL_0": 0,
|
41 |
+
"LABEL_1": 1
|
42 |
+
},
|
43 |
+
"length_penalty": 1.0,
|
44 |
+
"max_length": 20,
|
45 |
+
"min_length": 0,
|
46 |
+
"model_type": "Idefics2ConnectorConfig",
|
47 |
+
"no_repeat_ngram_size": 0,
|
48 |
+
"num_beam_groups": 1,
|
49 |
+
"num_beams": 1,
|
50 |
+
"num_key_value_heads": 4,
|
51 |
+
"num_return_sequences": 1,
|
52 |
+
"num_sub_images": null,
|
53 |
+
"output_attentions": false,
|
54 |
+
"output_hidden_states": false,
|
55 |
+
"output_scores": false,
|
56 |
+
"pad_token_id": null,
|
57 |
+
"prefix": null,
|
58 |
+
"problem_type": null,
|
59 |
+
"pruned_heads": {},
|
60 |
+
"remove_invalid_values": false,
|
61 |
+
"repetition_penalty": 1.0,
|
62 |
+
"resampler_depth": 3,
|
63 |
+
"resampler_head_dim": 96,
|
64 |
+
"resampler_n_heads": 16,
|
65 |
+
"resampler_n_latents": 64,
|
66 |
+
"return_dict": true,
|
67 |
+
"return_dict_in_generate": false,
|
68 |
+
"rms_norm_eps": 1e-05,
|
69 |
+
"sep_token_id": null,
|
70 |
+
"suppress_tokens": null,
|
71 |
+
"task_specific_params": null,
|
72 |
+
"temperature": 1.0,
|
73 |
+
"tf_legacy_loss": false,
|
74 |
+
"tie_encoder_decoder": false,
|
75 |
+
"tie_word_embeddings": true,
|
76 |
+
"tokenizer_class": null,
|
77 |
+
"top_k": 50,
|
78 |
+
"top_p": 1.0,
|
79 |
+
"torch_dtype": null,
|
80 |
+
"torchscript": false,
|
81 |
+
"typical_p": 1.0,
|
82 |
+
"use_bfloat16": false,
|
83 |
+
"vision_hidden_size": 1152
|
84 |
+
},
|
85 |
+
"do_image_splitting": true,
|
86 |
+
"downsampler_config": {
|
87 |
+
"_name_or_path": "",
|
88 |
+
"add_cross_attention": false,
|
89 |
+
"architectures": [
|
90 |
+
"DownsamplerModel"
|
91 |
+
],
|
92 |
+
"auto_map": {
|
93 |
+
"AutoConfig": "configuration_downsampler.DownsamplerConfig",
|
94 |
+
"AutoModel": "modeling_downsampler.DownsamplerModel"
|
95 |
+
},
|
96 |
+
"bad_words_ids": null,
|
97 |
+
"begin_suppress_tokens": null,
|
98 |
+
"bias": false,
|
99 |
+
"bos_token_id": null,
|
100 |
+
"chunk_size_feed_forward": 0,
|
101 |
+
"cross_attention_hidden_size": null,
|
102 |
+
"decoder_start_token_id": null,
|
103 |
+
"depth": 2,
|
104 |
+
"diversity_penalty": 0.0,
|
105 |
+
"do_sample": false,
|
106 |
+
"early_stopping": false,
|
107 |
+
"encoder_no_repeat_ngram_size": 0,
|
108 |
+
"eos_token_id": null,
|
109 |
+
"exponential_decay_length_penalty": null,
|
110 |
+
"finetuning_task": null,
|
111 |
+
"forced_bos_token_id": null,
|
112 |
+
"forced_eos_token_id": null,
|
113 |
+
"hidden_act": "gelu",
|
114 |
+
"id2label": {
|
115 |
+
"0": "LABEL_0",
|
116 |
+
"1": "LABEL_1"
|
117 |
+
},
|
118 |
+
"is_decoder": false,
|
119 |
+
"is_encoder_decoder": false,
|
120 |
+
"kernel_size": 1,
|
121 |
+
"label2id": {
|
122 |
+
"LABEL_0": 0,
|
123 |
+
"LABEL_1": 1
|
124 |
+
},
|
125 |
+
"length_penalty": 1.0,
|
126 |
+
"llm_hidden_size": 4096,
|
127 |
+
"max_length": 20,
|
128 |
+
"min_length": 0,
|
129 |
+
"model_type": "downsampler",
|
130 |
+
"no_repeat_ngram_size": 0,
|
131 |
+
"num_beam_groups": 1,
|
132 |
+
"num_beams": 1,
|
133 |
+
"num_return_sequences": 1,
|
134 |
+
"output_attentions": false,
|
135 |
+
"output_hidden_states": false,
|
136 |
+
"output_scores": false,
|
137 |
+
"pad_token_id": null,
|
138 |
+
"prefix": null,
|
139 |
+
"problem_type": null,
|
140 |
+
"pruned_heads": {},
|
141 |
+
"remove_invalid_values": false,
|
142 |
+
"repetition_penalty": 1.0,
|
143 |
+
"return_dict": true,
|
144 |
+
"return_dict_in_generate": false,
|
145 |
+
"sep_token_id": null,
|
146 |
+
"stride": 1,
|
147 |
+
"suppress_tokens": null,
|
148 |
+
"task_specific_params": null,
|
149 |
+
"temperature": 1.0,
|
150 |
+
"tf_legacy_loss": false,
|
151 |
+
"tie_encoder_decoder": false,
|
152 |
+
"tie_word_embeddings": true,
|
153 |
+
"tokenizer_class": null,
|
154 |
+
"top_k": 50,
|
155 |
+
"top_p": 1.0,
|
156 |
+
"torch_dtype": "float32",
|
157 |
+
"torchscript": false,
|
158 |
+
"typical_p": 1.0,
|
159 |
+
"use_bfloat16": false,
|
160 |
+
"visual_hidden_size": 1152
|
161 |
+
},
|
162 |
+
"image_processor": {
|
163 |
+
"do_convert_rgb": true,
|
164 |
+
"do_image_splitting": true,
|
165 |
+
"do_normalize": true,
|
166 |
+
"do_pad": true,
|
167 |
+
"do_rescale": true,
|
168 |
+
"do_resize": true,
|
169 |
+
"image_mean": [
|
170 |
+
0.5,
|
171 |
+
0.5,
|
172 |
+
0.5
|
173 |
+
],
|
174 |
+
"image_processor_type": "Idefics2ImageProcessor",
|
175 |
+
"image_std": [
|
176 |
+
0.5,
|
177 |
+
0.5,
|
178 |
+
0.5
|
179 |
+
],
|
180 |
+
"resample": 2,
|
181 |
+
"rescale_factor": 0.00392156862745098,
|
182 |
+
"size": {
|
183 |
+
"longest_edge": 980,
|
184 |
+
"shortest_edge": 378
|
185 |
+
}
|
186 |
+
},
|
187 |
+
"model_type": "wemm_hf",
|
188 |
+
"projector_config": {
|
189 |
+
"_name_or_path": "",
|
190 |
+
"add_cross_attention": false,
|
191 |
+
"architectures": [
|
192 |
+
"ProjectorModel"
|
193 |
+
],
|
194 |
+
"auto_map": {
|
195 |
+
"AutoConfig": "configuration_projector.ProjectorConfig",
|
196 |
+
"AutoModel": "modeling_projector.ProjectorModel"
|
197 |
+
},
|
198 |
+
"bad_words_ids": null,
|
199 |
+
"begin_suppress_tokens": null,
|
200 |
+
"bias": true,
|
201 |
+
"bos_token_id": null,
|
202 |
+
"chunk_size_feed_forward": 0,
|
203 |
+
"cross_attention_hidden_size": null,
|
204 |
+
"decoder_start_token_id": null,
|
205 |
+
"depth": 2,
|
206 |
+
"diversity_penalty": 0.0,
|
207 |
+
"do_sample": false,
|
208 |
+
"early_stopping": false,
|
209 |
+
"encoder_no_repeat_ngram_size": 0,
|
210 |
+
"eos_token_id": null,
|
211 |
+
"exponential_decay_length_penalty": null,
|
212 |
+
"finetuning_task": null,
|
213 |
+
"forced_bos_token_id": null,
|
214 |
+
"forced_eos_token_id": null,
|
215 |
+
"hidden_act": "gelu",
|
216 |
+
"id2label": {
|
217 |
+
"0": "LABEL_0",
|
218 |
+
"1": "LABEL_1"
|
219 |
+
},
|
220 |
+
"is_decoder": false,
|
221 |
+
"is_encoder_decoder": false,
|
222 |
+
"label2id": {
|
223 |
+
"LABEL_0": 0,
|
224 |
+
"LABEL_1": 1
|
225 |
+
},
|
226 |
+
"length_penalty": 1.0,
|
227 |
+
"llm_hidden_size": 4096,
|
228 |
+
"max_length": 20,
|
229 |
+
"min_length": 0,
|
230 |
+
"model_type": "projector",
|
231 |
+
"no_repeat_ngram_size": 0,
|
232 |
+
"num_beam_groups": 1,
|
233 |
+
"num_beams": 1,
|
234 |
+
"num_return_sequences": 1,
|
235 |
+
"output_attentions": false,
|
236 |
+
"output_hidden_states": false,
|
237 |
+
"output_scores": false,
|
238 |
+
"pad_token_id": null,
|
239 |
+
"prefix": null,
|
240 |
+
"problem_type": null,
|
241 |
+
"pruned_heads": {},
|
242 |
+
"remove_invalid_values": false,
|
243 |
+
"repetition_penalty": 1.0,
|
244 |
+
"return_dict": true,
|
245 |
+
"return_dict_in_generate": false,
|
246 |
+
"sep_token_id": null,
|
247 |
+
"suppress_tokens": null,
|
248 |
+
"task_specific_params": null,
|
249 |
+
"temperature": 1.0,
|
250 |
+
"tf_legacy_loss": false,
|
251 |
+
"tie_encoder_decoder": false,
|
252 |
+
"tie_word_embeddings": true,
|
253 |
+
"tokenizer_class": null,
|
254 |
+
"top_k": 50,
|
255 |
+
"top_p": 1.0,
|
256 |
+
"torch_dtype": "float32",
|
257 |
+
"torchscript": false,
|
258 |
+
"typical_p": 1.0,
|
259 |
+
"use_bfloat16": false,
|
260 |
+
"visual_hidden_size": 4096
|
261 |
+
},
|
262 |
+
"spliter_emb_config": {
|
263 |
+
"embedding_dim": 4096,
|
264 |
+
"num_embeddings": 12
|
265 |
+
},
|
266 |
+
"text_config": {
|
267 |
+
"_name_or_path": "",
|
268 |
+
"add_cross_attention": false,
|
269 |
+
"architectures": [
|
270 |
+
"InternLM2ForCausalLM"
|
271 |
+
],
|
272 |
+
"attn_implementation": "flash_attention_2",
|
273 |
+
"auto_map": {
|
274 |
+
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
275 |
+
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
|
276 |
+
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
|
277 |
+
},
|
278 |
+
"bad_words_ids": null,
|
279 |
+
"begin_suppress_tokens": null,
|
280 |
+
"bias": false,
|
281 |
+
"bos_token_id": 1,
|
282 |
+
"chunk_size_feed_forward": 0,
|
283 |
+
"cross_attention_hidden_size": null,
|
284 |
+
"decoder_start_token_id": null,
|
285 |
+
"diversity_penalty": 0.0,
|
286 |
+
"do_sample": false,
|
287 |
+
"early_stopping": false,
|
288 |
+
"encoder_no_repeat_ngram_size": 0,
|
289 |
+
"eos_token_id": 2,
|
290 |
+
"exponential_decay_length_penalty": null,
|
291 |
+
"finetuning_task": null,
|
292 |
+
"forced_bos_token_id": null,
|
293 |
+
"forced_eos_token_id": null,
|
294 |
+
"hidden_act": "silu",
|
295 |
+
"hidden_size": 4096,
|
296 |
+
"id2label": {
|
297 |
+
"0": "LABEL_0",
|
298 |
+
"1": "LABEL_1"
|
299 |
+
},
|
300 |
+
"initializer_range": 0.02,
|
301 |
+
"intermediate_size": 14336,
|
302 |
+
"is_decoder": false,
|
303 |
+
"is_encoder_decoder": false,
|
304 |
+
"label2id": {
|
305 |
+
"LABEL_0": 0,
|
306 |
+
"LABEL_1": 1
|
307 |
+
},
|
308 |
+
"length_penalty": 1.0,
|
309 |
+
"max_length": 20,
|
310 |
+
"max_position_embeddings": 32768,
|
311 |
+
"min_length": 0,
|
312 |
+
"model_type": "internlm2",
|
313 |
+
"no_repeat_ngram_size": 0,
|
314 |
+
"num_attention_heads": 32,
|
315 |
+
"num_beam_groups": 1,
|
316 |
+
"num_beams": 1,
|
317 |
+
"num_hidden_layers": 32,
|
318 |
+
"num_key_value_heads": 8,
|
319 |
+
"num_return_sequences": 1,
|
320 |
+
"output_attentions": false,
|
321 |
+
"output_hidden_states": false,
|
322 |
+
"output_scores": false,
|
323 |
+
"pad_token_id": 2,
|
324 |
+
"prefix": null,
|
325 |
+
"problem_type": null,
|
326 |
+
"pruned_heads": {},
|
327 |
+
"remove_invalid_values": false,
|
328 |
+
"repetition_penalty": 1.0,
|
329 |
+
"return_dict": true,
|
330 |
+
"return_dict_in_generate": false,
|
331 |
+
"rms_norm_eps": 1e-05,
|
332 |
+
"rope_scaling": {
|
333 |
+
"factor": 2.0,
|
334 |
+
"type": "dynamic"
|
335 |
+
},
|
336 |
+
"rope_theta": 1000000,
|
337 |
+
"sep_token_id": null,
|
338 |
+
"suppress_tokens": null,
|
339 |
+
"task_specific_params": null,
|
340 |
+
"temperature": 1.0,
|
341 |
+
"tf_legacy_loss": false,
|
342 |
+
"tie_encoder_decoder": false,
|
343 |
+
"tie_word_embeddings": false,
|
344 |
+
"tokenizer_class": null,
|
345 |
+
"top_k": 50,
|
346 |
+
"top_p": 1.0,
|
347 |
+
"torch_dtype": "float16",
|
348 |
+
"torchscript": false,
|
349 |
+
"typical_p": 1.0,
|
350 |
+
"use_bfloat16": false,
|
351 |
+
"use_cache": true,
|
352 |
+
"vocab_size": 92544
|
353 |
+
},
|
354 |
+
"torch_dtype": "bfloat16",
|
355 |
+
"transformers_version": "4.38.1",
|
356 |
+
"vision_config": {
|
357 |
+
"_name_or_path": "",
|
358 |
+
"add_cross_attention": false,
|
359 |
+
"architectures": null,
|
360 |
+
"attention_dropout": 0.0,
|
361 |
+
"bad_words_ids": null,
|
362 |
+
"begin_suppress_tokens": null,
|
363 |
+
"bos_token_id": null,
|
364 |
+
"chunk_size_feed_forward": 0,
|
365 |
+
"cross_attention_hidden_size": null,
|
366 |
+
"decoder_start_token_id": null,
|
367 |
+
"diversity_penalty": 0.0,
|
368 |
+
"do_sample": false,
|
369 |
+
"early_stopping": false,
|
370 |
+
"encoder_no_repeat_ngram_size": 0,
|
371 |
+
"eos_token_id": null,
|
372 |
+
"exponential_decay_length_penalty": null,
|
373 |
+
"finetuning_task": null,
|
374 |
+
"forced_bos_token_id": null,
|
375 |
+
"forced_eos_token_id": null,
|
376 |
+
"hidden_act": "gelu_pytorch_tanh",
|
377 |
+
"hidden_size": 1152,
|
378 |
+
"id2label": {
|
379 |
+
"0": "LABEL_0",
|
380 |
+
"1": "LABEL_1"
|
381 |
+
},
|
382 |
+
"image_size": 980,
|
383 |
+
"initializer_range": 0.02,
|
384 |
+
"intermediate_size": 4304,
|
385 |
+
"is_decoder": false,
|
386 |
+
"is_encoder_decoder": false,
|
387 |
+
"label2id": {
|
388 |
+
"LABEL_0": 0,
|
389 |
+
"LABEL_1": 1
|
390 |
+
},
|
391 |
+
"layer_norm_eps": 1e-06,
|
392 |
+
"length_penalty": 1.0,
|
393 |
+
"max_length": 20,
|
394 |
+
"min_length": 0,
|
395 |
+
"model_type": "Idefics2VisionConfig",
|
396 |
+
"no_repeat_ngram_size": 0,
|
397 |
+
"num_attention_heads": 16,
|
398 |
+
"num_beam_groups": 1,
|
399 |
+
"num_beams": 1,
|
400 |
+
"num_channels": 3,
|
401 |
+
"num_hidden_layers": 27,
|
402 |
+
"num_return_sequences": 1,
|
403 |
+
"output_attentions": false,
|
404 |
+
"output_hidden_states": false,
|
405 |
+
"output_scores": false,
|
406 |
+
"pad_token_id": null,
|
407 |
+
"patch_size": 14,
|
408 |
+
"prefix": null,
|
409 |
+
"problem_type": null,
|
410 |
+
"pruned_heads": {},
|
411 |
+
"remove_invalid_values": false,
|
412 |
+
"repetition_penalty": 1.0,
|
413 |
+
"return_dict": true,
|
414 |
+
"return_dict_in_generate": false,
|
415 |
+
"sep_token_id": null,
|
416 |
+
"suppress_tokens": null,
|
417 |
+
"task_specific_params": null,
|
418 |
+
"temperature": 1.0,
|
419 |
+
"tf_legacy_loss": false,
|
420 |
+
"tie_encoder_decoder": false,
|
421 |
+
"tie_word_embeddings": true,
|
422 |
+
"tokenizer_class": null,
|
423 |
+
"top_k": 50,
|
424 |
+
"top_p": 1.0,
|
425 |
+
"torch_dtype": null,
|
426 |
+
"torchscript": false,
|
427 |
+
"typical_p": 1.0,
|
428 |
+
"use_bfloat16": false
|
429 |
+
}
|
430 |
+
}
|
configuration_connector.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
2 |
+
import json
|
3 |
+
|
4 |
+
class Idefics2ConnectorConfig(PretrainedConfig):
|
5 |
+
r"""
|
6 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
7 |
+
documentation from [`PretrainedConfig`] for more information.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
11 |
+
The non-linear activation function (function or string) in the perceiver block.
|
12 |
+
resampler_n_latents (`int`, *optional*, defaults to 64):
|
13 |
+
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
14 |
+
resampler_depth (`int`, *optional*, defaults to 3):
|
15 |
+
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
|
16 |
+
resampler_n_heads (`int`, *optional*, defaults to 16):
|
17 |
+
Number of heads in each Transformer block (for multi-headed self-attention).
|
18 |
+
resampler_head_dim (`int`, *optional*, defaults to 96):
|
19 |
+
Dimensionality of each head projection in the Transformer block.
|
20 |
+
num_key_value_heads (`int`, *optional*, defaults to 4):
|
21 |
+
Number of key-value heads in the perceiver attention block.
|
22 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
23 |
+
The dropout ratio for the attention probabilities.
|
24 |
+
"""
|
25 |
+
_auto_class = 'AutoConfig'
|
26 |
+
model_type = "Idefics2ConnectorConfig"
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
vision_hidden_size=1152,
|
31 |
+
hidden_size=4096,
|
32 |
+
hidden_act="silu",
|
33 |
+
resampler_n_latents=64,
|
34 |
+
resampler_depth=3,
|
35 |
+
rms_norm_eps=1e-05,
|
36 |
+
resampler_n_heads=16,
|
37 |
+
resampler_head_dim=96,
|
38 |
+
num_key_value_heads=4,
|
39 |
+
attention_dropout=0.0,
|
40 |
+
intermediate_size=14336,
|
41 |
+
integrate_sub_images=None,
|
42 |
+
num_sub_images=None,
|
43 |
+
**kwargs,
|
44 |
+
):
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
self.vision_hidden_size = vision_hidden_size
|
47 |
+
self.hidden_size = hidden_size
|
48 |
+
self.hidden_act = hidden_act
|
49 |
+
self.resampler_n_latents = resampler_n_latents
|
50 |
+
self.resampler_depth = resampler_depth
|
51 |
+
self.rms_norm_eps = rms_norm_eps
|
52 |
+
self.resampler_n_heads = resampler_n_heads
|
53 |
+
self.num_key_value_heads = num_key_value_heads
|
54 |
+
self.resampler_head_dim = resampler_head_dim
|
55 |
+
self.attention_dropout = attention_dropout
|
56 |
+
self.intermediate_size = intermediate_size
|
57 |
+
self.integrate_sub_images = integrate_sub_images
|
58 |
+
self.num_sub_images = num_sub_images
|
59 |
+
|
60 |
+
if self.num_key_value_heads > self.resampler_n_heads:
|
61 |
+
raise ValueError(
|
62 |
+
f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
|
63 |
+
f" resampler_n_heads={self.resampler_n_heads}"
|
64 |
+
)
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def from_pretrained(cls, config_path, **kwargs) -> "PretrainedConfig":
|
68 |
+
|
69 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
70 |
+
config_dict = json.load(f)
|
71 |
+
cls = Idefics2ConnectorConfig(
|
72 |
+
vision_hidden_size=config_dict['vision_hidden_size'],
|
73 |
+
hidden_size=config_dict['hidden_size'],
|
74 |
+
hidden_act="silu",
|
75 |
+
resampler_n_latents=config_dict['resampler_n_latents'],
|
76 |
+
resampler_depth=config_dict['resampler_depth'],
|
77 |
+
rms_norm_eps=config_dict['rms_norm_eps'],
|
78 |
+
intermediate_size=config_dict['intermediate_size'],
|
79 |
+
integrate_sub_images=config_dict['integrate_sub_images'],
|
80 |
+
num_sub_images=config_dict['num_sub_images']
|
81 |
+
)
|
82 |
+
|
83 |
+
return cls
|
configuration_downsampler.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class DownsamplerConfig(PretrainedConfig):
|
6 |
+
model_type = 'downsampler'
|
7 |
+
_auto_class = 'AutoConfig'
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
kernel_size=1,
|
12 |
+
stride=1,
|
13 |
+
visual_hidden_size=4096,
|
14 |
+
llm_hidden_size=4096,
|
15 |
+
depth=2,
|
16 |
+
hidden_act='gelu',
|
17 |
+
bias=False,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
self.visual_hidden_size = visual_hidden_size
|
21 |
+
self.llm_hidden_size = llm_hidden_size
|
22 |
+
self.depth = depth
|
23 |
+
self.hidden_act = hidden_act
|
24 |
+
self.bias = bias
|
25 |
+
self.kernel_size = kernel_size
|
26 |
+
self.stride = stride
|
27 |
+
super().__init__(**kwargs)
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
28 |
+
class InternLM2Config(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
31 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
40 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
42 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
num_key_value_heads (`int`, *optional*):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
57 |
+
`num_attention_heads`.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
64 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
66 |
+
The epsilon used by the rms normalization layers.
|
67 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
69 |
+
relevant if `config.is_decoder=True`.
|
70 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether to tie weight embeddings
|
72 |
+
Example:
|
73 |
+
|
74 |
+
"""
|
75 |
+
model_type = "internlm2"
|
76 |
+
_auto_class = "AutoConfig"
|
77 |
+
|
78 |
+
def __init__( # pylint: disable=W0102
|
79 |
+
self,
|
80 |
+
vocab_size=103168,
|
81 |
+
hidden_size=4096,
|
82 |
+
intermediate_size=11008,
|
83 |
+
num_hidden_layers=32,
|
84 |
+
num_attention_heads=32,
|
85 |
+
num_key_value_heads=None,
|
86 |
+
hidden_act="silu",
|
87 |
+
max_position_embeddings=2048,
|
88 |
+
initializer_range=0.02,
|
89 |
+
rms_norm_eps=1e-6,
|
90 |
+
use_cache=True,
|
91 |
+
pad_token_id=0,
|
92 |
+
bos_token_id=1,
|
93 |
+
eos_token_id=2,
|
94 |
+
tie_word_embeddings=False,
|
95 |
+
bias=True,
|
96 |
+
rope_theta=10000,
|
97 |
+
rope_scaling=None,
|
98 |
+
attn_implementation="eager",
|
99 |
+
**kwargs,
|
100 |
+
):
|
101 |
+
self.vocab_size = vocab_size
|
102 |
+
self.max_position_embeddings = max_position_embeddings
|
103 |
+
self.hidden_size = hidden_size
|
104 |
+
self.intermediate_size = intermediate_size
|
105 |
+
self.num_hidden_layers = num_hidden_layers
|
106 |
+
self.num_attention_heads = num_attention_heads
|
107 |
+
self.bias = bias
|
108 |
+
|
109 |
+
if num_key_value_heads is None:
|
110 |
+
num_key_value_heads = num_attention_heads
|
111 |
+
self.num_key_value_heads = num_key_value_heads
|
112 |
+
|
113 |
+
self.hidden_act = hidden_act
|
114 |
+
self.initializer_range = initializer_range
|
115 |
+
self.rms_norm_eps = rms_norm_eps
|
116 |
+
self.use_cache = use_cache
|
117 |
+
self.rope_theta = rope_theta
|
118 |
+
self.rope_scaling = rope_scaling
|
119 |
+
self._rope_scaling_validation()
|
120 |
+
|
121 |
+
self.attn_implementation = attn_implementation
|
122 |
+
if self.attn_implementation is None:
|
123 |
+
self.attn_implementation = "eager"
|
124 |
+
super().__init__(
|
125 |
+
pad_token_id=pad_token_id,
|
126 |
+
bos_token_id=bos_token_id,
|
127 |
+
eos_token_id=eos_token_id,
|
128 |
+
tie_word_embeddings=tie_word_embeddings,
|
129 |
+
**kwargs,
|
130 |
+
)
|
131 |
+
|
132 |
+
def _rope_scaling_validation(self):
|
133 |
+
"""
|
134 |
+
Validate the `rope_scaling` configuration.
|
135 |
+
"""
|
136 |
+
if self.rope_scaling is None:
|
137 |
+
return
|
138 |
+
|
139 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
140 |
+
raise ValueError(
|
141 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
142 |
+
f"got {self.rope_scaling}"
|
143 |
+
)
|
144 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
145 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
146 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
147 |
+
raise ValueError(
|
148 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
149 |
+
)
|
150 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
151 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_projector.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class ProjectorConfig(PretrainedConfig):
|
6 |
+
model_type = 'projector'
|
7 |
+
_auto_class = 'AutoConfig'
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
visual_hidden_size=4096,
|
12 |
+
llm_hidden_size=4096,
|
13 |
+
depth=2,
|
14 |
+
hidden_act='gelu',
|
15 |
+
bias=True,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
self.visual_hidden_size = visual_hidden_size
|
19 |
+
self.llm_hidden_size = llm_hidden_size
|
20 |
+
self.depth = depth
|
21 |
+
self.hidden_act = hidden_act
|
22 |
+
self.bias = bias
|
23 |
+
super().__init__(**kwargs)
|
configuration_vision.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
3 |
+
import json
|
4 |
+
|
5 |
+
class Idefics2VisionConfig(PretrainedConfig):
|
6 |
+
model_type = "Idefics2VisionConfig"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
hidden_size=768,
|
11 |
+
intermediate_size=3072,
|
12 |
+
num_hidden_layers=12,
|
13 |
+
num_attention_heads=12,
|
14 |
+
num_channels=3,
|
15 |
+
image_size=224,
|
16 |
+
patch_size=32,
|
17 |
+
hidden_act="gelu_pytorch_tanh",
|
18 |
+
layer_norm_eps=1e-6,
|
19 |
+
attention_dropout=0.0,
|
20 |
+
initializer_range=0.02,
|
21 |
+
model_type='Idefics2VisionConfig',
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
|
25 |
+
self.hidden_size = hidden_size
|
26 |
+
self.intermediate_size = intermediate_size
|
27 |
+
self.num_hidden_layers = num_hidden_layers
|
28 |
+
self.num_attention_heads = num_attention_heads
|
29 |
+
self.num_channels = num_channels
|
30 |
+
self.patch_size = patch_size
|
31 |
+
self.image_size = image_size
|
32 |
+
self.attention_dropout = attention_dropout
|
33 |
+
self.layer_norm_eps = layer_norm_eps
|
34 |
+
self.hidden_act = hidden_act
|
35 |
+
self.initializer_range = initializer_range
|
36 |
+
|
37 |
+
super().__init__(**kwargs)
|
38 |
+
|
configuration_wemm.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
import json
|
4 |
+
# from transformers import CONFIG_MAPPING
|
5 |
+
from peft import PeftConfig
|
6 |
+
from .configuration_vision import Idefics2VisionConfig
|
7 |
+
from .configuration_internlm2 import InternLM2Config
|
8 |
+
from .configuration_projector import ProjectorConfig
|
9 |
+
from .configuration_connector import Idefics2ConnectorConfig
|
10 |
+
from .image_processor import Idefics2ImageProcessor
|
11 |
+
from .configuration_downsampler import DownsamplerConfig
|
12 |
+
|
13 |
+
class WeMMConfig(PretrainedConfig):
|
14 |
+
model_type = "wemm_hf"
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
vision_config = None,
|
19 |
+
text_config = None,
|
20 |
+
projector_config = None,
|
21 |
+
connector_config = None,
|
22 |
+
adapter_path = None,
|
23 |
+
image_processor = None,
|
24 |
+
do_image_splitting = False,
|
25 |
+
spliter_emb_config = None,
|
26 |
+
downsampler_config = None,
|
27 |
+
tokenizer_config = None,
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
# vision_config
|
31 |
+
if vision_config is not None:
|
32 |
+
self.vision_config = Idefics2VisionConfig(**vision_config)
|
33 |
+
|
34 |
+
|
35 |
+
# text_config
|
36 |
+
if text_config is not None:
|
37 |
+
self.text_config = InternLM2Config(**text_config)
|
38 |
+
|
39 |
+
# projector_config
|
40 |
+
if projector_config is not None:
|
41 |
+
self.projector_config = ProjectorConfig(**projector_config)
|
42 |
+
|
43 |
+
# connector_config
|
44 |
+
if connector_config is not None:
|
45 |
+
self.connector_config = Idefics2ConnectorConfig(**connector_config)
|
46 |
+
|
47 |
+
if image_processor is not None:
|
48 |
+
self.image_processor = image_processor
|
49 |
+
|
50 |
+
|
51 |
+
if adapter_path is not None:
|
52 |
+
self.adapter_path = adapter_path
|
53 |
+
|
54 |
+
self.do_image_splitting = do_image_splitting
|
55 |
+
|
56 |
+
if spliter_emb_config is not None:
|
57 |
+
self.spliter_emb_config = spliter_emb_config
|
58 |
+
|
59 |
+
if downsampler_config is not None:
|
60 |
+
self.downsampler_config = DownsamplerConfig(**downsampler_config)
|
61 |
+
|
62 |
+
if tokenizer_config is not None:
|
63 |
+
self.tokenizer_config = tokenizer_config
|
64 |
+
|
65 |
+
super().__init__(**kwargs)
|
66 |
+
|
67 |
+
if __name__=="__main__":
|
68 |
+
wemm_config_path = "/mnt/csp/mmvision/home/feipengma/projects/wemm_evaluation/WeMM/config.json"
|
69 |
+
wemm_config = WeMMConfig.from_pretrained(wemm_config_path)
|
70 |
+
print(wemm_config.connector_config)
|
connector.py
ADDED
@@ -0,0 +1,720 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
import math
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Dict, List, Optional, Tuple, Union
|
7 |
+
import json
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.cache_utils import Cache, DynamicCache
|
17 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
18 |
+
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
|
19 |
+
from transformers.utils import (
|
20 |
+
add_start_docstrings,
|
21 |
+
add_start_docstrings_to_model_forward,
|
22 |
+
is_flash_attn_2_available,
|
23 |
+
is_flash_attn_greater_or_equal_2_10,
|
24 |
+
logging,
|
25 |
+
replace_return_docstrings,
|
26 |
+
)
|
27 |
+
|
28 |
+
if is_flash_attn_2_available():
|
29 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
31 |
+
|
32 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
33 |
+
|
34 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
35 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
36 |
+
"""
|
37 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
38 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
39 |
+
"""
|
40 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
41 |
+
if n_rep == 1:
|
42 |
+
return hidden_states
|
43 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
44 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
45 |
+
|
46 |
+
class Idefics2ConnectorConfig(PretrainedConfig):
|
47 |
+
r"""
|
48 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
49 |
+
documentation from [`PretrainedConfig`] for more information.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
53 |
+
The non-linear activation function (function or string) in the perceiver block.
|
54 |
+
resampler_n_latents (`int`, *optional*, defaults to 64):
|
55 |
+
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
56 |
+
resampler_depth (`int`, *optional*, defaults to 3):
|
57 |
+
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
|
58 |
+
resampler_n_heads (`int`, *optional*, defaults to 16):
|
59 |
+
Number of heads in each Transformer block (for multi-headed self-attention).
|
60 |
+
resampler_head_dim (`int`, *optional*, defaults to 96):
|
61 |
+
Dimensionality of each head projection in the Transformer block.
|
62 |
+
num_key_value_heads (`int`, *optional*, defaults to 4):
|
63 |
+
Number of key-value heads in the perceiver attention block.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio for the attention probabilities.
|
66 |
+
"""
|
67 |
+
_auto_class = 'AutoConfig'
|
68 |
+
model_type = "Idefics2ConnectorConfig"
|
69 |
+
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
vision_hidden_size=1152,
|
73 |
+
hidden_size=4096,
|
74 |
+
hidden_act="silu",
|
75 |
+
resampler_n_latents=64,
|
76 |
+
resampler_depth=3,
|
77 |
+
rms_norm_eps=1e-05,
|
78 |
+
resampler_n_heads=16,
|
79 |
+
resampler_head_dim=96,
|
80 |
+
num_key_value_heads=4,
|
81 |
+
attention_dropout=0.0,
|
82 |
+
intermediate_size=14336,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
self.vision_hidden_size = vision_hidden_size
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.hidden_act = hidden_act
|
89 |
+
self.resampler_n_latents = resampler_n_latents
|
90 |
+
self.resampler_depth = resampler_depth
|
91 |
+
self.rms_norm_eps = rms_norm_eps
|
92 |
+
self.resampler_n_heads = resampler_n_heads
|
93 |
+
self.num_key_value_heads = num_key_value_heads
|
94 |
+
self.resampler_head_dim = resampler_head_dim
|
95 |
+
self.attention_dropout = attention_dropout
|
96 |
+
self.intermediate_size = intermediate_size
|
97 |
+
if self.num_key_value_heads > self.resampler_n_heads:
|
98 |
+
raise ValueError(
|
99 |
+
f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
|
100 |
+
f" resampler_n_heads={self.resampler_n_heads}"
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
@classmethod
|
105 |
+
def from_pretrained(cls, config_path, **kwargs) -> "PretrainedConfig":
|
106 |
+
|
107 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
108 |
+
config_dict = json.load(f)
|
109 |
+
cls = Idefics2ConnectorConfig(
|
110 |
+
vision_hidden_size=config_dict['vision_hidden_size'],
|
111 |
+
hidden_size=config_dict['hidden_size'],
|
112 |
+
hidden_act="silu",
|
113 |
+
resampler_n_latents=config_dict['resampler_n_latents'],
|
114 |
+
resampler_depth=config_dict['resampler_depth'],
|
115 |
+
rms_norm_eps=config_dict['rms_norm_eps'],
|
116 |
+
intermediate_size = config_dict['intermediate_size']
|
117 |
+
)
|
118 |
+
|
119 |
+
return cls
|
120 |
+
|
121 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
122 |
+
def _get_unpad_data(attention_mask):
|
123 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
124 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
125 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
126 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
127 |
+
return (
|
128 |
+
indices,
|
129 |
+
cu_seqlens,
|
130 |
+
max_seqlen_in_batch,
|
131 |
+
)
|
132 |
+
|
133 |
+
class Idefics2PerceiverAttention(nn.Module):
|
134 |
+
def __init__(self, config, layer_idx: Optional[int] = None) -> None:
|
135 |
+
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
|
136 |
+
super().__init__()
|
137 |
+
|
138 |
+
self.layer_idx = None
|
139 |
+
self.hidden_size = config.hidden_size
|
140 |
+
self.num_heads = config.resampler_n_heads
|
141 |
+
self.head_dim = config.resampler_head_dim
|
142 |
+
self.num_key_value_heads = config.num_key_value_heads
|
143 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
144 |
+
self.attention_dropout = config.attention_dropout
|
145 |
+
|
146 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
147 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
148 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
149 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
150 |
+
|
151 |
+
self.is_causal = False
|
152 |
+
|
153 |
+
def forward(
|
154 |
+
self,
|
155 |
+
latents: torch.Tensor,
|
156 |
+
context: torch.Tensor,
|
157 |
+
attention_mask: Optional[torch.Tensor] = None,
|
158 |
+
position_ids: Optional[torch.LongTensor] = None,
|
159 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
160 |
+
output_attentions: bool = False,
|
161 |
+
use_cache: bool = False,
|
162 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
163 |
+
"""
|
164 |
+
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
|
165 |
+
|
166 |
+
Args:
|
167 |
+
latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
|
168 |
+
context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
|
169 |
+
attention_mask (`torch.Tensor`, *optional*): Tensor of shape [bsz, 1, seq, n_latents] representing attention mask.
|
170 |
+
position_ids (`torch.LongTensor`, *optional*): Tensor of shape [bsz, seq] representing position indices of each input token.
|
171 |
+
past_key_value (`Tuple[torch.Tensor]`, *optional*): Tuple of tensors containing cached key and value states.
|
172 |
+
output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights.
|
173 |
+
use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching.
|
174 |
+
"""
|
175 |
+
bsz, q_len, _ = latents.size()
|
176 |
+
kv_seq_len = q_len + context.size()[1]
|
177 |
+
|
178 |
+
hidden_states = torch.concat([context, latents], dim=-2)
|
179 |
+
|
180 |
+
query_states = self.q_proj(latents)
|
181 |
+
key_states = self.k_proj(hidden_states)
|
182 |
+
value_states = self.v_proj(hidden_states)
|
183 |
+
|
184 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
185 |
+
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
186 |
+
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
187 |
+
|
188 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
189 |
+
|
190 |
+
if past_key_value is not None:
|
191 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
192 |
+
|
193 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
194 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
195 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
196 |
+
|
197 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
198 |
+
|
199 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
200 |
+
raise ValueError(
|
201 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
202 |
+
f" {attn_weights.size()}"
|
203 |
+
)
|
204 |
+
|
205 |
+
if attention_mask is not None:
|
206 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
207 |
+
raise ValueError(
|
208 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
209 |
+
)
|
210 |
+
|
211 |
+
attn_weights = attn_weights + attention_mask
|
212 |
+
|
213 |
+
# upcast attention to fp32
|
214 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
215 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
216 |
+
|
217 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
218 |
+
raise ValueError(
|
219 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
220 |
+
f" {attn_output.size()}"
|
221 |
+
)
|
222 |
+
|
223 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
224 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
225 |
+
|
226 |
+
attn_output = self.o_proj(attn_output)
|
227 |
+
|
228 |
+
if not output_attentions:
|
229 |
+
attn_weights = None
|
230 |
+
|
231 |
+
return attn_output, attn_weights, past_key_value
|
232 |
+
|
233 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with MistralAttention->Idefics2PerceiverAttention,MistralFlashAttention->Idefics2PerceiverFlashAttention,Mistral->Idefics2
|
234 |
+
class Idefics2PerceiverFlashAttention2(Idefics2PerceiverAttention):
|
235 |
+
"""
|
236 |
+
Idefics2 flash attention module. This module inherits from `Idefics2PerceiverAttention` as the weights of the module stays
|
237 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
238 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
239 |
+
"""
|
240 |
+
|
241 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
242 |
+
def __init__(self, *args, **kwargs):
|
243 |
+
super().__init__(*args, **kwargs)
|
244 |
+
|
245 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
246 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
247 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
248 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
249 |
+
|
250 |
+
# Ignore copy
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
latents: torch.Tensor,
|
254 |
+
context: torch.Tensor,
|
255 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
256 |
+
position_ids: Optional[torch.LongTensor] = None,
|
257 |
+
past_key_value: Optional[Cache] = None,
|
258 |
+
output_attentions: bool = False,
|
259 |
+
use_cache: bool = False,
|
260 |
+
**kwargs,
|
261 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
262 |
+
|
263 |
+
bsz, q_len, _ = latents.size()
|
264 |
+
kv_seq_len = q_len + context.size()[1]
|
265 |
+
|
266 |
+
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
|
267 |
+
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
|
268 |
+
query_states = self.q_proj(latents)
|
269 |
+
key_states = self.k_proj(torch.cat([context, latents], dim=-2))
|
270 |
+
value_states = self.v_proj(torch.cat([context, latents], dim=-2))
|
271 |
+
|
272 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
273 |
+
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
274 |
+
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
275 |
+
|
276 |
+
kv_seq_len = key_states.shape[-2]
|
277 |
+
if past_key_value is not None:
|
278 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
279 |
+
|
280 |
+
if past_key_value is not None:
|
281 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
282 |
+
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window:
|
283 |
+
slicing_tokens = kv_seq_len - self.config.sliding_window
|
284 |
+
|
285 |
+
past_key = past_key_value[0]
|
286 |
+
past_value = past_key_value[1]
|
287 |
+
|
288 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
289 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
290 |
+
|
291 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
292 |
+
raise ValueError(
|
293 |
+
"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1,"
|
294 |
+
f" head_dim`), got {past_key.shape}"
|
295 |
+
)
|
296 |
+
|
297 |
+
past_key_value = (past_key, past_value)
|
298 |
+
|
299 |
+
if attention_mask is not None:
|
300 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
301 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
302 |
+
|
303 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
304 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
305 |
+
|
306 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
307 |
+
|
308 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
309 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
310 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
311 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
312 |
+
|
313 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
314 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
315 |
+
# cast them back in float16 just to be sure everything works as expected.
|
316 |
+
input_dtype = query_states.dtype
|
317 |
+
if input_dtype == torch.float32:
|
318 |
+
if torch.is_autocast_enabled():
|
319 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
320 |
+
# Handle the case where the model is quantized
|
321 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
322 |
+
target_dtype = self.config._pre_quantization_dtype
|
323 |
+
else:
|
324 |
+
target_dtype = self.q_proj.weight.dtype
|
325 |
+
|
326 |
+
logger.warning_once(
|
327 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
328 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
329 |
+
f" {target_dtype}."
|
330 |
+
)
|
331 |
+
|
332 |
+
query_states = query_states.to(target_dtype)
|
333 |
+
key_states = key_states.to(target_dtype)
|
334 |
+
value_states = value_states.to(target_dtype)
|
335 |
+
|
336 |
+
# Reashape to the expected shape for Flash Attention
|
337 |
+
query_states = query_states.transpose(1, 2)
|
338 |
+
key_states = key_states.transpose(1, 2)
|
339 |
+
value_states = value_states.transpose(1, 2)
|
340 |
+
|
341 |
+
attn_output = self._flash_attention_forward(
|
342 |
+
query_states,
|
343 |
+
key_states,
|
344 |
+
value_states,
|
345 |
+
attention_mask,
|
346 |
+
q_len,
|
347 |
+
dropout=dropout_rate,
|
348 |
+
use_sliding_windows=False,
|
349 |
+
)
|
350 |
+
|
351 |
+
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous()
|
352 |
+
attn_output = self.o_proj(attn_output)
|
353 |
+
|
354 |
+
if not output_attentions:
|
355 |
+
attn_weights = None
|
356 |
+
|
357 |
+
return attn_output, attn_weights, past_key_value
|
358 |
+
|
359 |
+
def _flash_attention_forward(
|
360 |
+
self,
|
361 |
+
query_states,
|
362 |
+
key_states,
|
363 |
+
value_states,
|
364 |
+
attention_mask,
|
365 |
+
query_length,
|
366 |
+
dropout=0.0,
|
367 |
+
softmax_scale=None,
|
368 |
+
use_sliding_windows=False,
|
369 |
+
):
|
370 |
+
"""
|
371 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
372 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
373 |
+
|
374 |
+
Args:
|
375 |
+
query_states (`torch.Tensor`):
|
376 |
+
Input query states to be passed to Flash Attention API
|
377 |
+
key_states (`torch.Tensor`):
|
378 |
+
Input key states to be passed to Flash Attention API
|
379 |
+
value_states (`torch.Tensor`):
|
380 |
+
Input value states to be passed to Flash Attention API
|
381 |
+
attention_mask (`torch.Tensor`):
|
382 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
383 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
384 |
+
dropout (`float`):
|
385 |
+
Attention dropout
|
386 |
+
softmax_scale (`float`, *optional*):
|
387 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
388 |
+
use_sliding_windows (`bool`, *optional*):
|
389 |
+
Whether to activate sliding window attention.
|
390 |
+
"""
|
391 |
+
if not self._flash_attn_uses_top_left_mask:
|
392 |
+
causal = self.is_causal
|
393 |
+
else:
|
394 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
395 |
+
causal = self.is_causal and query_length != 1
|
396 |
+
|
397 |
+
# Contains at least one padding token in the sequence
|
398 |
+
if attention_mask is not None:
|
399 |
+
batch_size = query_states.shape[0]
|
400 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
401 |
+
query_states, key_states, value_states, attention_mask, query_length
|
402 |
+
)
|
403 |
+
|
404 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
405 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
406 |
+
|
407 |
+
if not use_sliding_windows:
|
408 |
+
attn_output_unpad = flash_attn_varlen_func(
|
409 |
+
query_states,
|
410 |
+
key_states,
|
411 |
+
value_states,
|
412 |
+
cu_seqlens_q=cu_seqlens_q,
|
413 |
+
cu_seqlens_k=cu_seqlens_k,
|
414 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
415 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
416 |
+
dropout_p=dropout,
|
417 |
+
softmax_scale=softmax_scale,
|
418 |
+
causal=causal,
|
419 |
+
)
|
420 |
+
else:
|
421 |
+
attn_output_unpad = flash_attn_varlen_func(
|
422 |
+
query_states,
|
423 |
+
key_states,
|
424 |
+
value_states,
|
425 |
+
cu_seqlens_q=cu_seqlens_q,
|
426 |
+
cu_seqlens_k=cu_seqlens_k,
|
427 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
428 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
429 |
+
dropout_p=dropout,
|
430 |
+
softmax_scale=softmax_scale,
|
431 |
+
causal=causal,
|
432 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
433 |
+
)
|
434 |
+
|
435 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
436 |
+
else:
|
437 |
+
if not use_sliding_windows:
|
438 |
+
attn_output = flash_attn_func(
|
439 |
+
query_states,
|
440 |
+
key_states,
|
441 |
+
value_states,
|
442 |
+
dropout,
|
443 |
+
softmax_scale=softmax_scale,
|
444 |
+
causal=causal,
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
attn_output = flash_attn_func(
|
448 |
+
query_states,
|
449 |
+
key_states,
|
450 |
+
value_states,
|
451 |
+
dropout,
|
452 |
+
softmax_scale=softmax_scale,
|
453 |
+
causal=causal,
|
454 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
455 |
+
)
|
456 |
+
|
457 |
+
return attn_output
|
458 |
+
|
459 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
460 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
461 |
+
|
462 |
+
# On the first iteration we need to properly re-create the padding mask
|
463 |
+
# by slicing it on the proper place
|
464 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
465 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
466 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
467 |
+
|
468 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
469 |
+
|
470 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
471 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
472 |
+
|
473 |
+
if query_length == kv_seq_len:
|
474 |
+
query_layer = index_first_axis(
|
475 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
476 |
+
)
|
477 |
+
cu_seqlens_q = cu_seqlens_k
|
478 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
479 |
+
indices_q = indices_k
|
480 |
+
elif query_length == 1:
|
481 |
+
max_seqlen_in_batch_q = 1
|
482 |
+
cu_seqlens_q = torch.arange(
|
483 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
484 |
+
) # There is a memcpy here, that is very bad.
|
485 |
+
indices_q = cu_seqlens_q[:-1]
|
486 |
+
query_layer = query_layer.squeeze(1)
|
487 |
+
else:
|
488 |
+
# The -q_len: slice assumes left padding.
|
489 |
+
attention_mask = attention_mask[:, -query_length:]
|
490 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
491 |
+
|
492 |
+
return (
|
493 |
+
query_layer,
|
494 |
+
key_layer,
|
495 |
+
value_layer,
|
496 |
+
indices_q,
|
497 |
+
(cu_seqlens_q, cu_seqlens_k),
|
498 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
499 |
+
)
|
500 |
+
|
501 |
+
IDEFICS2_PERCEIVER_ATTENTION_CLASSES = {
|
502 |
+
"eager": Idefics2PerceiverAttention,
|
503 |
+
"flash_attention_2": Idefics2PerceiverFlashAttention2,
|
504 |
+
}
|
505 |
+
|
506 |
+
|
507 |
+
class Idefics2MLP(nn.Module):
|
508 |
+
def __init__(
|
509 |
+
self,
|
510 |
+
hidden_size: int,
|
511 |
+
intermediate_size: int,
|
512 |
+
output_size: int,
|
513 |
+
hidden_act: str,
|
514 |
+
):
|
515 |
+
super().__init__()
|
516 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
517 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
518 |
+
self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
|
519 |
+
self.act_fn = ACT2FN[hidden_act]
|
520 |
+
|
521 |
+
def forward(self, x):
|
522 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
523 |
+
|
524 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Idefics2
|
525 |
+
class Idefics2RMSNorm(nn.Module):
|
526 |
+
def __init__(self, hidden_size, eps=1e-6):
|
527 |
+
"""
|
528 |
+
Idefics2RMSNorm is equivalent to T5LayerNorm
|
529 |
+
"""
|
530 |
+
super().__init__()
|
531 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
532 |
+
self.variance_epsilon = eps
|
533 |
+
|
534 |
+
def forward(self, hidden_states):
|
535 |
+
input_dtype = hidden_states.dtype
|
536 |
+
hidden_states = hidden_states.to(torch.float32)
|
537 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
538 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
539 |
+
return self.weight * hidden_states.to(input_dtype)
|
540 |
+
|
541 |
+
class Idefics2PerceiverLayer(nn.Module):
|
542 |
+
def __init__(self, config, layer_idx: int):
|
543 |
+
super().__init__()
|
544 |
+
self.hidden_size = config.hidden_size
|
545 |
+
self.n_latents = config.resampler_n_latents
|
546 |
+
self.depth = config.resampler_depth
|
547 |
+
self.rms_norm_eps = config.rms_norm_eps
|
548 |
+
|
549 |
+
self.input_latents_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
550 |
+
self.input_context_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
551 |
+
self.self_attn = IDEFICS2_PERCEIVER_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
552 |
+
self.post_attention_layernorm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
553 |
+
self.mlp = Idefics2MLP(
|
554 |
+
hidden_size=config.hidden_size,
|
555 |
+
intermediate_size=config.hidden_size * 4,
|
556 |
+
output_size=config.hidden_size,
|
557 |
+
hidden_act=config.hidden_act,
|
558 |
+
)
|
559 |
+
|
560 |
+
def forward(
|
561 |
+
self,
|
562 |
+
latents: torch.Tensor,
|
563 |
+
context: torch.Tensor,
|
564 |
+
attention_mask: Optional[torch.Tensor] = None,
|
565 |
+
position_ids: Optional[torch.LongTensor] = None,
|
566 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
567 |
+
output_attentions: Optional[bool] = False,
|
568 |
+
use_cache: Optional[bool] = False,
|
569 |
+
**kwargs,
|
570 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
571 |
+
"""
|
572 |
+
Args:
|
573 |
+
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
574 |
+
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
575 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
576 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
577 |
+
output_attentions (`bool`, *optional*):
|
578 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
579 |
+
returned tensors for more detail.
|
580 |
+
use_cache (`bool`, *optional*):
|
581 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
582 |
+
(see `past_key_values`).
|
583 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
584 |
+
"""
|
585 |
+
residual = latents
|
586 |
+
|
587 |
+
latents = self.input_latents_norm(latents)
|
588 |
+
context = self.input_context_norm(context)
|
589 |
+
|
590 |
+
latents, self_attn_weights, present_key_value = self.self_attn(
|
591 |
+
latents=latents,
|
592 |
+
context=context,
|
593 |
+
attention_mask=attention_mask,
|
594 |
+
)
|
595 |
+
latents = residual + latents
|
596 |
+
residual = latents
|
597 |
+
|
598 |
+
latents = self.post_attention_layernorm(latents)
|
599 |
+
latents = self.mlp(latents)
|
600 |
+
latents = residual + latents
|
601 |
+
|
602 |
+
outputs = (latents,)
|
603 |
+
|
604 |
+
if output_attentions:
|
605 |
+
outputs += (self_attn_weights,)
|
606 |
+
|
607 |
+
if use_cache:
|
608 |
+
outputs += (present_key_value,)
|
609 |
+
|
610 |
+
return outputs
|
611 |
+
|
612 |
+
class Idefics2Qformer(nn.Module):
|
613 |
+
|
614 |
+
def __init__(self, config) -> None:
|
615 |
+
"""
|
616 |
+
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
|
617 |
+
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
|
618 |
+
returns a Tensor of shape [bsz, n_latents, embed_dim]. The Resampler acts as a form of learned pooling and
|
619 |
+
is derived from [Perceiver: General Perception with Iterative Attention](https://arxiv.org/abs/2103.03206).
|
620 |
+
"""
|
621 |
+
super().__init__()
|
622 |
+
config._attn_implementation = "flash_attention_2"
|
623 |
+
self._use_flash_attention_2 = True
|
624 |
+
|
625 |
+
self.hidden_size = config.hidden_size
|
626 |
+
self.hidden_act = config.hidden_act
|
627 |
+
self.n_latents = config.resampler_n_latents
|
628 |
+
self.depth = config.resampler_depth
|
629 |
+
self.rms_norm_eps = config.rms_norm_eps
|
630 |
+
|
631 |
+
# Create Latents for Perceiver
|
632 |
+
self.latents = nn.Parameter(torch.ones(self.n_latents, self.hidden_size))
|
633 |
+
# Create Transformer Blocks
|
634 |
+
self.layers = nn.ModuleList([Idefics2PerceiverLayer(config, idx) for idx in range(self.depth)])
|
635 |
+
self.norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
|
636 |
+
|
637 |
+
|
638 |
+
|
639 |
+
|
640 |
+
def forward(
|
641 |
+
self,
|
642 |
+
context: torch.Tensor,
|
643 |
+
attention_mask,
|
644 |
+
) -> torch.Tensor:
|
645 |
+
# seq embed -> bsz seq embed
|
646 |
+
latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size()))
|
647 |
+
|
648 |
+
latent_attention_mask = torch.ones(
|
649 |
+
(attention_mask.size(0), latents.size(1)), dtype=attention_mask.dtype, device=attention_mask.device
|
650 |
+
)
|
651 |
+
attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1)
|
652 |
+
attention_mask = (
|
653 |
+
_prepare_4d_attention_mask(attention_mask, latents.dtype, tgt_len=self.n_latents)
|
654 |
+
if not self._use_flash_attention_2
|
655 |
+
else attention_mask
|
656 |
+
)
|
657 |
+
#all_latents = []
|
658 |
+
compressed_context = latents
|
659 |
+
#all_latents.append(latents)
|
660 |
+
for perceiver_layer in self.layers:
|
661 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
662 |
+
perceiver_layer.__call__,
|
663 |
+
compressed_context,
|
664 |
+
context,
|
665 |
+
attention_mask,
|
666 |
+
None,
|
667 |
+
None,
|
668 |
+
False,
|
669 |
+
False,
|
670 |
+
use_reentrant=True)
|
671 |
+
#layer_outputs = perceiver_layer(
|
672 |
+
# compressed_context,
|
673 |
+
# context,
|
674 |
+
# attention_mask=attention_mask,
|
675 |
+
# position_ids=None,
|
676 |
+
# past_key_value=None,
|
677 |
+
# output_attentions=False,
|
678 |
+
# use_cache=False,
|
679 |
+
#)
|
680 |
+
compressed_context = layer_outputs[0]
|
681 |
+
#all_latents.append(compressed_context)
|
682 |
+
|
683 |
+
compressed_context = self.norm(compressed_context)
|
684 |
+
|
685 |
+
return compressed_context
|
686 |
+
|
687 |
+
class Idefics2Connector(PreTrainedModel):
|
688 |
+
_auto_class = 'AutoModel'
|
689 |
+
config_class = Idefics2ConnectorConfig
|
690 |
+
|
691 |
+
def __init__(self, config):
|
692 |
+
super().__init__(config)
|
693 |
+
self.modality_projection = Idefics2MLP(
|
694 |
+
hidden_size=config.vision_hidden_size,
|
695 |
+
intermediate_size=config.intermediate_size,
|
696 |
+
output_size=config.hidden_size,
|
697 |
+
hidden_act=config.hidden_act,
|
698 |
+
)
|
699 |
+
self.perceiver_resampler = Idefics2Qformer(config)
|
700 |
+
self.config = config
|
701 |
+
|
702 |
+
def forward(self, image_hidden_states, attention_mask):
|
703 |
+
image_hidden_states = self.modality_projection(image_hidden_states)
|
704 |
+
image_hidden_states = self.perceiver_resampler(context=image_hidden_states, attention_mask=attention_mask)
|
705 |
+
|
706 |
+
vision_hidden_size = image_hidden_states.shape[-1]
|
707 |
+
num_image = image_hidden_states.shape[0]
|
708 |
+
reshaped_image_hidden_states = image_hidden_states.view(num_image, -1, vision_hidden_size)
|
709 |
+
|
710 |
+
return reshaped_image_hidden_states
|
711 |
+
|
712 |
+
@classmethod
|
713 |
+
def from_pretrained(self, config_path="/mnt/csp/mmvision/home/arrayyang/idefics2-8b/idefics2_connector"):
|
714 |
+
config = Idefics2ConnectorConfig.from_pretrained(f'{config_path}/config.json')
|
715 |
+
cls = Idefics2Connector(config=config)
|
716 |
+
|
717 |
+
state_dict = torch.load(f'{config_path}/connector.pth', map_location='cpu')
|
718 |
+
ret = cls.load_state_dict(state_dict, strict=False)
|
719 |
+
print("Loading idefics2 Connector from : {}".format(config_path))
|
720 |
+
return cls
|
image_processor.py
ADDED
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import json
|
21 |
+
import torch
|
22 |
+
|
23 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
24 |
+
from transformers.image_transforms import PaddingMode, pad, resize, to_channel_dimension_format
|
25 |
+
from transformers.image_utils import (
|
26 |
+
IMAGENET_STANDARD_MEAN,
|
27 |
+
IMAGENET_STANDARD_STD,
|
28 |
+
ChannelDimension,
|
29 |
+
ImageInput,
|
30 |
+
PILImageResampling,
|
31 |
+
get_image_size,
|
32 |
+
infer_channel_dimension_format,
|
33 |
+
is_scaled_image,
|
34 |
+
is_valid_image,
|
35 |
+
to_numpy_array,
|
36 |
+
valid_images,
|
37 |
+
validate_preprocess_arguments,
|
38 |
+
)
|
39 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
40 |
+
import PIL
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
def get_resize_output_image_size(image, size, input_data_format) -> Tuple[int, int]:
|
49 |
+
"""
|
50 |
+
Get the output size of the image after resizing given a dictionary specifying the max and min sizes.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
image (`np.ndarray`):
|
54 |
+
Image to resize.
|
55 |
+
size (`Dict[str, int]`):
|
56 |
+
Size of the output image containing the keys "shortest_edge" and "longest_edge".
|
57 |
+
input_data_format (`ChannelDimension` or `str`):
|
58 |
+
The channel dimension format of the input image.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
The output size of the image after resizing.
|
62 |
+
"""
|
63 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
64 |
+
|
65 |
+
min_len = size["shortest_edge"]
|
66 |
+
max_len = size["longest_edge"]
|
67 |
+
aspect_ratio = width / height
|
68 |
+
|
69 |
+
if width >= height and width > max_len:
|
70 |
+
width = max_len
|
71 |
+
height = int(width / aspect_ratio)
|
72 |
+
elif height > width and height > max_len:
|
73 |
+
height = max_len
|
74 |
+
width = int(height * aspect_ratio)
|
75 |
+
height = max(height, min_len)
|
76 |
+
width = max(width, min_len)
|
77 |
+
return height, width
|
78 |
+
|
79 |
+
|
80 |
+
def make_list_of_images(images: ImageInput) -> List[List[np.ndarray]]:
|
81 |
+
"""
|
82 |
+
Convert a single image or a list of images to a list of numpy arrays.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
images (`ImageInput`):
|
86 |
+
A single image or a list of images.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
A list of numpy arrays.
|
90 |
+
"""
|
91 |
+
# If it's a single image, convert it to a list of lists
|
92 |
+
if is_valid_image(images):
|
93 |
+
images = [[images]]
|
94 |
+
# If it's a list of images, it's a single batch, so convert it to a list of lists
|
95 |
+
elif isinstance(images, (list, tuple)) and len(images) > 0 and is_valid_image(images[0]):
|
96 |
+
images = [images]
|
97 |
+
# If it's a list of batches, it's already in the right format
|
98 |
+
elif (
|
99 |
+
isinstance(images, (list, tuple))
|
100 |
+
and len(images) > 0
|
101 |
+
and isinstance(images[0], (list, tuple))
|
102 |
+
and is_valid_image(images[0][0])
|
103 |
+
):
|
104 |
+
pass
|
105 |
+
else:
|
106 |
+
raise ValueError(
|
107 |
+
"Invalid input type. Must be a single image, a list of images, or a list of batches of images."
|
108 |
+
)
|
109 |
+
return images
|
110 |
+
|
111 |
+
|
112 |
+
# Copied from transformers.models.detr.image_processing_detr.max_across_indices
|
113 |
+
def max_across_indices(values: Iterable[Any]) -> List[Any]:
|
114 |
+
"""
|
115 |
+
Return the maximum value across all indices of an iterable of values.
|
116 |
+
"""
|
117 |
+
return [max(values_i) for values_i in zip(*values)]
|
118 |
+
|
119 |
+
|
120 |
+
def get_max_height_width(
|
121 |
+
images_list: List[List[np.ndarray]], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
122 |
+
) -> List[int]:
|
123 |
+
"""
|
124 |
+
Get the maximum height and width across all images in a batch.
|
125 |
+
"""
|
126 |
+
if input_data_format is None:
|
127 |
+
input_data_format = infer_channel_dimension_format(images_list[0][0])
|
128 |
+
|
129 |
+
image_sizes = []
|
130 |
+
for images in images_list:
|
131 |
+
for image in images:
|
132 |
+
image_sizes.append(get_image_size(image, channel_dim=input_data_format))
|
133 |
+
|
134 |
+
max_height, max_width = max_across_indices(image_sizes)
|
135 |
+
return (max_height, max_width)
|
136 |
+
|
137 |
+
|
138 |
+
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
|
139 |
+
def make_pixel_mask(
|
140 |
+
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
141 |
+
) -> np.ndarray:
|
142 |
+
"""
|
143 |
+
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
image (`np.ndarray`):
|
147 |
+
Image to make the pixel mask for.
|
148 |
+
output_size (`Tuple[int, int]`):
|
149 |
+
Output size of the mask.
|
150 |
+
"""
|
151 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
152 |
+
mask = np.zeros(output_size, dtype=np.int64)
|
153 |
+
mask[:input_height, :input_width] = 1
|
154 |
+
return mask
|
155 |
+
|
156 |
+
|
157 |
+
# FIXME Amy: merge this function with the one in image_transforms.py
|
158 |
+
def convert_to_rgb(image: ImageInput) -> ImageInput:
|
159 |
+
"""
|
160 |
+
Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
|
161 |
+
as is.
|
162 |
+
Args:
|
163 |
+
image (Image):
|
164 |
+
The image to convert.
|
165 |
+
"""
|
166 |
+
if not isinstance(image, PIL.Image.Image):
|
167 |
+
return image
|
168 |
+
|
169 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
170 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
171 |
+
if image.mode == "RGB":
|
172 |
+
return image
|
173 |
+
|
174 |
+
image_rgba = image.convert("RGBA")
|
175 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
176 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
177 |
+
alpha_composite = alpha_composite.convert("RGB")
|
178 |
+
return alpha_composite
|
179 |
+
|
180 |
+
|
181 |
+
class Idefics2ImageProcessor(BaseImageProcessor):
|
182 |
+
r"""
|
183 |
+
Constructs a Idefics image processor.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
187 |
+
Whether to convert the image to RGB. This is useful if the input image is of a different format e.g. RGBA.
|
188 |
+
Only has an effect if the input image is in the PIL format.
|
189 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
190 |
+
Whether to resize the image. The longest edge of the image is resized to be <= `size["longest_edge"]`, with the
|
191 |
+
shortest edge resized to keep the input aspect ratio, with a minimum size of `size["shortest_edge"]`.
|
192 |
+
size (`Dict`, *optional*):
|
193 |
+
Controls the size of the output image. This is a dictionary containing the keys "shortest_edge" and "longest_edge".
|
194 |
+
resample (`Resampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
195 |
+
Resampling filter to use when resizing the image.
|
196 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
197 |
+
Whether to rescale the image. If set to `True`, the image is rescaled to have pixel values between 0 and 1.
|
198 |
+
rescale_factor (`float`, *optional*, defaults to `1/255`):
|
199 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
200 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
201 |
+
Whether to normalize the image. If set to `True`, the image is normalized to have a mean of `image_mean` and
|
202 |
+
a standard deviation of `image_std`.
|
203 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
|
204 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
205 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
|
206 |
+
overridden by the `image_mean` parameter in the `preprocess` method.
|
207 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
|
208 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
209 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
210 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
211 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
212 |
+
Whether or not to pad the images to the largest height and width in the batch and number of images per
|
213 |
+
sample in the batch, such that the returned tensor is of shape (batch_size, max_num_images, num_channels, max_height, max_width).
|
214 |
+
do_image_splitting (`bool`, *optional*, defaults to `False`):
|
215 |
+
Whether to split the image into a sequence 4 equal sub-images concatenated with the original image. That
|
216 |
+
strategy was first introduced in https://arxiv.org/abs/2311.06607.
|
217 |
+
"""
|
218 |
+
|
219 |
+
model_input_names = ["pixel_values"]
|
220 |
+
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
do_convert_rgb: bool = True,
|
224 |
+
do_resize: bool = True,
|
225 |
+
size: Dict[str, int] = None,
|
226 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
227 |
+
do_rescale: bool = True,
|
228 |
+
rescale_factor: float = 1 / 255,
|
229 |
+
do_normalize: bool = True,
|
230 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
231 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
232 |
+
do_pad: bool = True,
|
233 |
+
do_image_splitting: bool = False,
|
234 |
+
**kwargs,
|
235 |
+
) -> None:
|
236 |
+
super().__init__(**kwargs)
|
237 |
+
self.do_convert_rgb = do_convert_rgb
|
238 |
+
self.do_resize = do_resize
|
239 |
+
self.size = size if size is not None else {"shortest_edge": 378, "longest_edge": 980}
|
240 |
+
self.resample = resample
|
241 |
+
self.do_rescale = do_rescale
|
242 |
+
self.rescale_factor = rescale_factor
|
243 |
+
self.do_normalize = do_normalize
|
244 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
245 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
246 |
+
self.do_pad = do_pad
|
247 |
+
self.do_image_splitting = do_image_splitting
|
248 |
+
|
249 |
+
def resize(
|
250 |
+
self,
|
251 |
+
image: np.ndarray,
|
252 |
+
size: Dict[str, int],
|
253 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
254 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
255 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
256 |
+
**kwargs,
|
257 |
+
) -> np.ndarray:
|
258 |
+
"""
|
259 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
260 |
+
resized to keep the input aspect ratio.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
image (`np.ndarray`):
|
264 |
+
Image to resize.
|
265 |
+
size (`Dict[str, int]`):
|
266 |
+
Size of the output image.
|
267 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
268 |
+
Resampling filter to use when resiizing the image.
|
269 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
270 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
271 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
272 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
273 |
+
"""
|
274 |
+
if "shortest_edge" in size and "longest_edge" in size:
|
275 |
+
size = get_resize_output_image_size(image, size, input_data_format)
|
276 |
+
elif "height" in size and "width" in size:
|
277 |
+
size = (size["height"], size["width"])
|
278 |
+
else:
|
279 |
+
raise ValueError(
|
280 |
+
"size must be a dictionary with keys 'shortest_edge' and 'longest_edge' or 'height' and 'width'."
|
281 |
+
)
|
282 |
+
try:
|
283 |
+
resized = resize(
|
284 |
+
image, size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
285 |
+
)
|
286 |
+
except Exception as err:
|
287 |
+
print(f"resize error with image: {image.shape} {image}")
|
288 |
+
|
289 |
+
return resize(
|
290 |
+
image, size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
291 |
+
)
|
292 |
+
|
293 |
+
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image
|
294 |
+
def _pad_image(
|
295 |
+
self,
|
296 |
+
image: np.ndarray,
|
297 |
+
output_size: Tuple[int, int],
|
298 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
299 |
+
data_format: Optional[ChannelDimension] = None,
|
300 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
301 |
+
) -> np.ndarray:
|
302 |
+
"""
|
303 |
+
Pad an image with zeros to the given size.
|
304 |
+
"""
|
305 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
306 |
+
output_height, output_width = output_size
|
307 |
+
|
308 |
+
pad_bottom = output_height - input_height
|
309 |
+
pad_right = output_width - input_width
|
310 |
+
padding = ((0, pad_bottom), (0, pad_right))
|
311 |
+
padded_image = pad(
|
312 |
+
image,
|
313 |
+
padding,
|
314 |
+
mode=PaddingMode.CONSTANT,
|
315 |
+
constant_values=constant_values,
|
316 |
+
data_format=data_format,
|
317 |
+
input_data_format=input_data_format,
|
318 |
+
)
|
319 |
+
return padded_image
|
320 |
+
|
321 |
+
def pad(
|
322 |
+
self,
|
323 |
+
images: List[np.ndarray],
|
324 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
325 |
+
return_pixel_mask: bool = True,
|
326 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
327 |
+
data_format: Optional[ChannelDimension] = None,
|
328 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
329 |
+
) -> BatchFeature:
|
330 |
+
"""
|
331 |
+
For a list of images, for each images, pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width.
|
332 |
+
For each sample in the batch, pads the sample with empty images to the max_number of images per sample in the batch. Optionally returns a pixel mask.
|
333 |
+
|
334 |
+
Args:
|
335 |
+
images (`np.ndarray`):
|
336 |
+
List of list of images to pad. Pads to the largest height and width in the batch.
|
337 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
338 |
+
The value to use for the padding if `mode` is `"constant"`.
|
339 |
+
return_pixel_mask (`bool`, *optional*, defaults to `True`):
|
340 |
+
Whether to return a pixel mask.
|
341 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
342 |
+
The type of tensors to return. Can be one of:
|
343 |
+
- Unset: Return a list of `np.ndarray`.
|
344 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
345 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
346 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
347 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
348 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
349 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
350 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
351 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
352 |
+
"""
|
353 |
+
pad_size = get_max_height_width(images, input_data_format=input_data_format)
|
354 |
+
|
355 |
+
batch_size = len(images)
|
356 |
+
max_num_images = max(len(images_) for images_ in images)
|
357 |
+
input_data_format = (
|
358 |
+
infer_channel_dimension_format(images[0][0]) if input_data_format is None else input_data_format
|
359 |
+
)
|
360 |
+
data_format = input_data_format if data_format is None else data_format
|
361 |
+
|
362 |
+
def empty_image(size, input_data_format):
|
363 |
+
if input_data_format == ChannelDimension.FIRST:
|
364 |
+
return np.zeros((3, *size), dtype=np.uint8)
|
365 |
+
elif input_data_format == ChannelDimension.LAST:
|
366 |
+
return np.zeros((*size, 3), dtype=np.uint8)
|
367 |
+
raise ValueError("Invalid channel dimension format.")
|
368 |
+
|
369 |
+
padded_images_list = [
|
370 |
+
[empty_image(pad_size, data_format) for _ in range(max_num_images)] for _ in range(batch_size)
|
371 |
+
]
|
372 |
+
padded_masks = [[np.zeros(pad_size) for _ in range(max_num_images)] for _ in range(batch_size)]
|
373 |
+
|
374 |
+
for batch_idx in range(batch_size):
|
375 |
+
for sample_idx, image in enumerate(images[batch_idx]):
|
376 |
+
padded_images_list[batch_idx][sample_idx] = self._pad_image(
|
377 |
+
image,
|
378 |
+
pad_size,
|
379 |
+
constant_values=constant_values,
|
380 |
+
data_format=data_format,
|
381 |
+
input_data_format=input_data_format,
|
382 |
+
)
|
383 |
+
padded_masks[batch_idx][sample_idx] = make_pixel_mask(
|
384 |
+
image, output_size=pad_size, input_data_format=input_data_format
|
385 |
+
)
|
386 |
+
|
387 |
+
padded_masks = padded_masks if return_pixel_mask else None
|
388 |
+
return padded_images_list, padded_masks
|
389 |
+
|
390 |
+
def _crop(
|
391 |
+
self,
|
392 |
+
im: np.ndarray,
|
393 |
+
w1: int,
|
394 |
+
h1: int,
|
395 |
+
w2: int,
|
396 |
+
h2: int,
|
397 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
398 |
+
) -> np.ndarray:
|
399 |
+
if input_data_format == ChannelDimension.FIRST:
|
400 |
+
return im[:, h1:h2, w1:w2]
|
401 |
+
elif input_data_format == ChannelDimension.LAST:
|
402 |
+
return im[h1:h2, w1:w2, :]
|
403 |
+
|
404 |
+
def split_image(
|
405 |
+
self,
|
406 |
+
image: np.ndarray,
|
407 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
408 |
+
):
|
409 |
+
"""
|
410 |
+
Split an image into 4 equal sub-images, and the concatenate that sequence with the original image.
|
411 |
+
That means that a single image becomes a sequence of 5 images.
|
412 |
+
This is a "trick" to spend more compute on each image with no changes in the vision encoder.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
image (`np.ndarray`):
|
416 |
+
Images to split.
|
417 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
418 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
419 |
+
"""
|
420 |
+
height, width = get_image_size(image, input_data_format)
|
421 |
+
|
422 |
+
mid_width = width // 2
|
423 |
+
mid_height = height // 2
|
424 |
+
image_list = [
|
425 |
+
self._crop(image, 0, 0, mid_width, mid_height, input_data_format),
|
426 |
+
self._crop(image, mid_width, 0, width, mid_height, input_data_format),
|
427 |
+
self._crop(image, 0, mid_height, mid_width, height, input_data_format),
|
428 |
+
self._crop(image, mid_width, mid_height, width, height, input_data_format),
|
429 |
+
image,
|
430 |
+
]
|
431 |
+
return image_list
|
432 |
+
|
433 |
+
def preprocess(
|
434 |
+
self,
|
435 |
+
images: ImageInput,
|
436 |
+
do_convert_rgb: Optional[bool] = None,
|
437 |
+
do_resize: Optional[bool] = None,
|
438 |
+
size: Optional[Dict[str, int]] = None,
|
439 |
+
resample: PILImageResampling = None,
|
440 |
+
do_rescale: Optional[bool] = None,
|
441 |
+
rescale_factor: Optional[float] = None,
|
442 |
+
do_normalize: Optional[bool] = None,
|
443 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
444 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
445 |
+
do_pad: Optional[bool] = None,
|
446 |
+
do_image_splitting: Optional[bool] = None,
|
447 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
448 |
+
input_data_format: Optional[ChannelDimension] = None,
|
449 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
450 |
+
):
|
451 |
+
"""
|
452 |
+
Preprocess a batch of images.
|
453 |
+
|
454 |
+
Args:
|
455 |
+
images (`ImageInput`):
|
456 |
+
A list of images to preprocess.
|
457 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
458 |
+
Whether to convert the image to RGB.
|
459 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
460 |
+
Whether to resize the image.
|
461 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
462 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
463 |
+
the longest edge resized to keep the input aspect ratio.
|
464 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
465 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
466 |
+
has an effect if `do_resize` is set to `True`.
|
467 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
468 |
+
Whether to rescale the image.
|
469 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
470 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
471 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
472 |
+
Whether to normalize the image.
|
473 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
474 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
475 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
476 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
477 |
+
`True`.
|
478 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
479 |
+
Whether or not to pad the images to the largest height and width in the batch.
|
480 |
+
do_image_splitting (`bool`, *optional*, defaults to `self.do_image_splitting`):
|
481 |
+
Whether to split the image into a sequence 4 equal sub-images concatenated with the original image. That
|
482 |
+
strategy was first introduced in https://arxiv.org/abs/2311.06607.
|
483 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
484 |
+
The type of tensors to return. Can be one of:
|
485 |
+
- Unset: Return a list of `np.ndarray`.
|
486 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
487 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
488 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
489 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
490 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
491 |
+
The channel dimension format for the output image. Can be one of:
|
492 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
493 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
494 |
+
- Unset: Use the channel dimension format of the input image.
|
495 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
496 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
497 |
+
from the input image. Can be one of:
|
498 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
499 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
500 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
501 |
+
"""
|
502 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
503 |
+
size = size if size is not None else self.size
|
504 |
+
resample = resample if resample is not None else self.resample
|
505 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
506 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
507 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
508 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
509 |
+
image_std = image_std if image_std is not None else self.image_std
|
510 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
511 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
512 |
+
do_image_splitting = do_image_splitting if do_image_splitting is not None else self.do_image_splitting
|
513 |
+
|
514 |
+
images_list = make_list_of_images(images)
|
515 |
+
|
516 |
+
if not valid_images(images_list[0]):
|
517 |
+
raise ValueError(
|
518 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
519 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
520 |
+
)
|
521 |
+
|
522 |
+
validate_preprocess_arguments(
|
523 |
+
do_rescale=do_rescale,
|
524 |
+
rescale_factor=rescale_factor,
|
525 |
+
do_normalize=do_normalize,
|
526 |
+
image_mean=image_mean,
|
527 |
+
image_std=image_std,
|
528 |
+
do_resize=do_resize,
|
529 |
+
size=size,
|
530 |
+
resample=resample,
|
531 |
+
)
|
532 |
+
|
533 |
+
if do_convert_rgb:
|
534 |
+
images_list = [[convert_to_rgb(image) for image in images] for images in images_list]
|
535 |
+
|
536 |
+
# All transformations expect numpy arrays.
|
537 |
+
images_list = [[to_numpy_array(image) for image in images] for images in images_list]
|
538 |
+
|
539 |
+
if is_scaled_image(images_list[0][0]) and do_rescale:
|
540 |
+
logger.warning_once(
|
541 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
542 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
543 |
+
)
|
544 |
+
|
545 |
+
if input_data_format is None:
|
546 |
+
# We assume that all images have the same channel dimension format.
|
547 |
+
input_data_format = ChannelDimension.LAST #infer_channel_dimension_format(images_list[0][0])
|
548 |
+
|
549 |
+
if do_image_splitting:
|
550 |
+
new_images_list = []
|
551 |
+
for images in images_list:
|
552 |
+
new_images = []
|
553 |
+
for image in images:
|
554 |
+
new_images.extend(self.split_image(image, input_data_format))
|
555 |
+
new_images_list.append(new_images)
|
556 |
+
images_list = new_images_list
|
557 |
+
|
558 |
+
if do_resize:
|
559 |
+
images_list = [
|
560 |
+
[
|
561 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
562 |
+
for image in images
|
563 |
+
]
|
564 |
+
for images in images_list
|
565 |
+
]
|
566 |
+
|
567 |
+
if do_rescale:
|
568 |
+
images_list = [
|
569 |
+
[
|
570 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
571 |
+
for image in images
|
572 |
+
]
|
573 |
+
for images in images_list
|
574 |
+
]
|
575 |
+
|
576 |
+
if do_normalize:
|
577 |
+
images_list = [
|
578 |
+
[
|
579 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
580 |
+
for image in images
|
581 |
+
]
|
582 |
+
for images in images_list
|
583 |
+
]
|
584 |
+
|
585 |
+
pixel_attention_mask = None
|
586 |
+
if do_pad:
|
587 |
+
images_list, pixel_attention_mask = self.pad(
|
588 |
+
images_list, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=input_data_format
|
589 |
+
)
|
590 |
+
|
591 |
+
if data_format is not None:
|
592 |
+
images_list = [
|
593 |
+
[
|
594 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
595 |
+
for image in images
|
596 |
+
]
|
597 |
+
for images in images_list
|
598 |
+
]
|
599 |
+
|
600 |
+
data = {"pixel_values": np.array(images_list) if do_pad else images_list} # Faster tensor conversion
|
601 |
+
if pixel_attention_mask is not None:
|
602 |
+
data["pixel_attention_mask"] = np.array(pixel_attention_mask) if do_pad else pixel_attention_mask
|
603 |
+
|
604 |
+
|
605 |
+
temp_pixel_values = data["pixel_values"].copy()
|
606 |
+
temp_pixel_values = torch.from_numpy(temp_pixel_values)
|
607 |
+
batch_size, num_images, num_channels, height, width = temp_pixel_values.shape
|
608 |
+
temp_pixel_values = temp_pixel_values.view(batch_size * num_images, *temp_pixel_values.shape[2:])
|
609 |
+
# Remove padding images - padding images are full 0.
|
610 |
+
nb_values_per_image = temp_pixel_values.shape[1:].numel()
|
611 |
+
real_images_inds = (temp_pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
|
612 |
+
temp_pixel_values = temp_pixel_values[real_images_inds].contiguous()
|
613 |
+
# if 'pixel_attention_mask' is not none
|
614 |
+
if 'pixel_attention_mask' in data:
|
615 |
+
pixel_attention_mask = torch.from_numpy(data['pixel_attention_mask'])
|
616 |
+
# Remove padding images from the mask/pP p
|
617 |
+
pixel_attention_mask = pixel_attention_mask.view(
|
618 |
+
batch_size * num_images, *pixel_attention_mask.shape[2:]
|
619 |
+
)
|
620 |
+
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
|
621 |
+
pixel_attention_mask = pixel_attention_mask.to(torch.bool)
|
622 |
+
else:
|
623 |
+
pixel_attention_mask = torch.ones(
|
624 |
+
size=(temp_pixel_values.size(0), temp_pixel_values.size(2), temp_pixel_values.size(3)),
|
625 |
+
dtype=torch.bool,
|
626 |
+
device=temp_pixel_values.device,
|
627 |
+
)
|
628 |
+
patch_size = 14 #self.config.vision_config.patch_size
|
629 |
+
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
|
630 |
+
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
|
631 |
+
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
632 |
+
|
633 |
+
data["navit_pixel_values"] = temp_pixel_values
|
634 |
+
data["pixel_attention_mask"] = patch_attention_mask
|
635 |
+
|
636 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
637 |
+
|
638 |
+
@classmethod
|
639 |
+
def from_pretrained(self, config_path="/mnt/csp/mmvision/home/arrayyang/idefics2-8b/idefics2_image_processor"):
|
640 |
+
with open(f'{config_path}/config.json', "r", encoding="utf-8") as f:
|
641 |
+
config = json.load(f)
|
642 |
+
|
643 |
+
cls = Idefics2ImageProcessor(
|
644 |
+
do_convert_rgb = config['do_convert_rgb'],
|
645 |
+
do_resize = config['do_resize'],
|
646 |
+
size = config['size'],
|
647 |
+
resample = config['resample'],
|
648 |
+
do_rescale = config['do_rescale'],
|
649 |
+
rescale_factor = config['rescale_factor'],
|
650 |
+
do_normalize = config['do_normalize'],
|
651 |
+
image_mean = config['image_mean'],
|
652 |
+
image_std = config['image_std'],
|
653 |
+
do_pad = config['do_pad'],
|
654 |
+
do_image_splitting = config['do_image_splitting']
|
655 |
+
)
|
656 |
+
#print("Loading idefics2 image Processor: {}".format(config_path))
|
657 |
+
return cls
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a63aa34ebb22ce9607601f38bb1304c4c632f8f8708687540ea2effda145648
|
3 |
+
size 4916334192
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ac3a55783b156725e1b85d76aeb8a8d62a3a87f111937d7a1dc055c97d634e2
|
3 |
+
size 4959969744
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c21a3cdb95c20ffabb3211af5a24df1c36d87110c1ea5c3b08580b48e1de66f
|
3 |
+
size 4993507248
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bda83c8f7b945b4cefc1b0b7abed8842ccc4eec99f07d4ae1c0d3fe7b1674afd
|
3 |
+
size 4245939544
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_downsampler.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
|
7 |
+
from .configuration_downsampler import DownsamplerConfig
|
8 |
+
|
9 |
+
|
10 |
+
class DownsamplerModel(PreTrainedModel):
|
11 |
+
_auto_class = 'AutoModel'
|
12 |
+
config_class = DownsamplerConfig
|
13 |
+
base_model_prefix = 'model'
|
14 |
+
supports_gradient_checkpointing = True
|
15 |
+
|
16 |
+
def __init__(self, config: DownsamplerConfig) -> None:
|
17 |
+
super().__init__(config)
|
18 |
+
self.gradient_checkpointing = False
|
19 |
+
|
20 |
+
self.group_op = nn.Conv2d(
|
21 |
+
in_channels=config.visual_hidden_size,
|
22 |
+
out_channels=config.llm_hidden_size,
|
23 |
+
bias=config.bias,
|
24 |
+
kernel_size=config.kernel_size, stride=config.stride)
|
25 |
+
modules = list()
|
26 |
+
for _ in range(1, config.depth):
|
27 |
+
modules.append(ACT2FN[config.hidden_act])
|
28 |
+
modules.append(
|
29 |
+
nn.Linear(
|
30 |
+
config.llm_hidden_size,
|
31 |
+
config.llm_hidden_size,
|
32 |
+
bias=config.bias))
|
33 |
+
self.linear_model = nn.Sequential(*modules)
|
34 |
+
|
35 |
+
def enable_input_require_grads(self):
|
36 |
+
|
37 |
+
def make_inputs_require_grad(module, input, output):
|
38 |
+
output.requires_grad_(True)
|
39 |
+
|
40 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
41 |
+
|
42 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
43 |
+
if isinstance(module, DownsamplerModel):
|
44 |
+
module.gradient_checkpointing = value
|
45 |
+
|
46 |
+
def _forward(self, x):
|
47 |
+
|
48 |
+
# (B, FULL_H, FULL_W, D) -> (B, D, FULL_H, FULL_W)
|
49 |
+
x = x.permute(0, 3, 1, 2)
|
50 |
+
x = self.group_op(x)
|
51 |
+
# (B, D, FULL_H, FULL_W) -> (B, FULL_H, FULL_W, D)
|
52 |
+
x = x.permute(0, 2, 3, 1)
|
53 |
+
x = self.linear_model(x)
|
54 |
+
|
55 |
+
return x
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
if self.gradient_checkpointing and self.training:
|
59 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(self._forward, x)
|
60 |
+
else:
|
61 |
+
layer_outputs = self._forward(x)
|
62 |
+
return layer_outputs
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from einops import rearrange
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
BaseModelOutputWithPast,
|
32 |
+
CausalLMOutputWithPast,
|
33 |
+
SequenceClassifierOutputWithPast,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
|
43 |
+
try:
|
44 |
+
from transformers.generation.streamers import BaseStreamer
|
45 |
+
except: # noqa # pylint: disable=bare-except
|
46 |
+
BaseStreamer = None
|
47 |
+
|
48 |
+
from .configuration_internlm2 import InternLM2Config
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CONFIG_FOR_DOC = "InternLM2Config"
|
53 |
+
|
54 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
55 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
56 |
+
def _import_flash_attn():
|
57 |
+
global flash_attn_func, flash_attn_varlen_func
|
58 |
+
global pad_input, index_first_axis, unpad_input
|
59 |
+
try:
|
60 |
+
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
61 |
+
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
62 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
63 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
64 |
+
except ImportError:
|
65 |
+
raise ImportError("flash_attn is not installed.")
|
66 |
+
|
67 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
68 |
+
def _get_unpad_data(attention_mask):
|
69 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
70 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
71 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
72 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
73 |
+
return (
|
74 |
+
indices,
|
75 |
+
cu_seqlens,
|
76 |
+
max_seqlen_in_batch,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
81 |
+
def _make_causal_mask(
|
82 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
83 |
+
):
|
84 |
+
"""
|
85 |
+
Make causal mask used for bi-directional self-attention.
|
86 |
+
"""
|
87 |
+
bsz, tgt_len = input_ids_shape
|
88 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
89 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
90 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
91 |
+
mask = mask.to(dtype)
|
92 |
+
|
93 |
+
if past_key_values_length > 0:
|
94 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
95 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
96 |
+
|
97 |
+
|
98 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
99 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
100 |
+
"""
|
101 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
102 |
+
"""
|
103 |
+
bsz, src_len = mask.size()
|
104 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
105 |
+
|
106 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
107 |
+
|
108 |
+
inverted_mask = 1.0 - expanded_mask
|
109 |
+
|
110 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
111 |
+
|
112 |
+
|
113 |
+
class PLoRA(nn.Module):
|
114 |
+
|
115 |
+
def __init__(self,
|
116 |
+
in_features: int,
|
117 |
+
out_features: int,
|
118 |
+
bias: bool = True,
|
119 |
+
device=None,
|
120 |
+
dtype=None,
|
121 |
+
lora_r=8,
|
122 |
+
lora_alpha=16,
|
123 |
+
lora_dropout=0.05,
|
124 |
+
lora_len=0,
|
125 |
+
**kwargs) -> None:
|
126 |
+
super().__init__()
|
127 |
+
|
128 |
+
self.original_linear = nn.Linear(in_features, out_features, bias, device, dtype)
|
129 |
+
|
130 |
+
self.lora_r = lora_r
|
131 |
+
self.lora_alpha = lora_alpha
|
132 |
+
self.lora_len = lora_len
|
133 |
+
if lora_dropout > 0.:
|
134 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
135 |
+
else:
|
136 |
+
self.lora_dropout = lambda x: x
|
137 |
+
self.lora_scaling = self.lora_alpha / self.lora_r
|
138 |
+
|
139 |
+
self.Plora_A = nn.Linear(
|
140 |
+
in_features, self.lora_r, bias=False, device=device, dtype=dtype)
|
141 |
+
self.Plora_B = nn.Linear(
|
142 |
+
self.lora_r, out_features, bias=False, device=device, dtype=dtype)
|
143 |
+
|
144 |
+
self.reset_parameters()
|
145 |
+
|
146 |
+
def reset_parameters(self):
|
147 |
+
if hasattr(self, 'lora_A'):
|
148 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
149 |
+
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
150 |
+
nn.init.zeros_(self.lora_B.weight)
|
151 |
+
|
152 |
+
def forward(self, x, im_mask=None):
|
153 |
+
res = self.original_linear(x)
|
154 |
+
|
155 |
+
if im_mask is not None:
|
156 |
+
if torch.sum(im_mask) > 0:
|
157 |
+
part_x = x[im_mask]
|
158 |
+
res[im_mask] += self.Plora_B(
|
159 |
+
self.Plora_A(
|
160 |
+
self.lora_dropout(part_x))) * self.lora_scaling
|
161 |
+
else:
|
162 |
+
part_x = x[:, :1]
|
163 |
+
res[:, :1] += self.Plora_B(
|
164 |
+
self.Plora_A(self.lora_dropout(part_x))) * 0
|
165 |
+
return res
|
166 |
+
|
167 |
+
|
168 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
169 |
+
class InternLM2RMSNorm(nn.Module):
|
170 |
+
def __init__(self, hidden_size, eps=1e-6):
|
171 |
+
"""
|
172 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
173 |
+
"""
|
174 |
+
super().__init__()
|
175 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
176 |
+
self.variance_epsilon = eps
|
177 |
+
|
178 |
+
def forward(self, hidden_states):
|
179 |
+
input_dtype = hidden_states.dtype
|
180 |
+
hidden_states = hidden_states.to(torch.float32)
|
181 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
182 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
183 |
+
return self.weight * hidden_states.to(input_dtype)
|
184 |
+
|
185 |
+
|
186 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
187 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
188 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.dim = dim
|
192 |
+
self.max_position_embeddings = max_position_embeddings
|
193 |
+
self.base = base
|
194 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
195 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
196 |
+
|
197 |
+
# Build here to make `torch.jit.trace` work.
|
198 |
+
self._set_cos_sin_cache(
|
199 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
200 |
+
)
|
201 |
+
|
202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
+
self.max_seq_len_cached = seq_len
|
204 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
205 |
+
|
206 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
207 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
210 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
211 |
+
|
212 |
+
def forward(self, x, seq_len=None):
|
213 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
214 |
+
if seq_len > self.max_seq_len_cached:
|
215 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
216 |
+
|
217 |
+
return (
|
218 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
219 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
224 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
225 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
226 |
+
|
227 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
228 |
+
self.scaling_factor = scaling_factor
|
229 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
230 |
+
|
231 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
232 |
+
self.max_seq_len_cached = seq_len
|
233 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
234 |
+
t = t / self.scaling_factor
|
235 |
+
|
236 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
237 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
238 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
239 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
240 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
241 |
+
|
242 |
+
|
243 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
244 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
245 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
246 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
247 |
+
"""
|
248 |
+
|
249 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
250 |
+
self.scaling_factor = scaling_factor
|
251 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
252 |
+
|
253 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
254 |
+
self.max_seq_len_cached = seq_len
|
255 |
+
|
256 |
+
if seq_len > self.max_position_embeddings:
|
257 |
+
base = self.base * (
|
258 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
259 |
+
) ** (self.dim / (self.dim - 2))
|
260 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
261 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
262 |
+
|
263 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
264 |
+
|
265 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
266 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
267 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
268 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
269 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
270 |
+
|
271 |
+
|
272 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
273 |
+
def rotate_half(x):
|
274 |
+
"""Rotates half the hidden dims of the input."""
|
275 |
+
x1 = x[..., : x.shape[-1] // 2]
|
276 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
277 |
+
return torch.cat((-x2, x1), dim=-1)
|
278 |
+
|
279 |
+
|
280 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
281 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
282 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
283 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
284 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
285 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
286 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
287 |
+
return q_embed, k_embed
|
288 |
+
|
289 |
+
|
290 |
+
class InternLM2MLP(nn.Module):
|
291 |
+
def __init__(self, config):
|
292 |
+
super().__init__()
|
293 |
+
self.config = config
|
294 |
+
self.hidden_size = config.hidden_size
|
295 |
+
self.intermediate_size = config.intermediate_size
|
296 |
+
# self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
297 |
+
# self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
298 |
+
# self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
299 |
+
|
300 |
+
self.w1 = PLoRA(
|
301 |
+
self.hidden_size,
|
302 |
+
self.intermediate_size,
|
303 |
+
bias=False,
|
304 |
+
lora_r=256,
|
305 |
+
lora_alpha=256,
|
306 |
+
lora_len=576)
|
307 |
+
self.w3 = PLoRA(
|
308 |
+
self.hidden_size,
|
309 |
+
self.intermediate_size,
|
310 |
+
bias=False,
|
311 |
+
lora_r=256,
|
312 |
+
lora_alpha=256,
|
313 |
+
lora_len=576)
|
314 |
+
self.w2 = PLoRA(
|
315 |
+
self.intermediate_size,
|
316 |
+
self.hidden_size,
|
317 |
+
bias=False,
|
318 |
+
lora_r=256,
|
319 |
+
lora_alpha=256,
|
320 |
+
lora_len=576)
|
321 |
+
|
322 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
323 |
+
|
324 |
+
def forward(self, x, im_mask):
|
325 |
+
down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
|
326 |
+
return down_proj
|
327 |
+
|
328 |
+
|
329 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
330 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
331 |
+
"""
|
332 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
333 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
334 |
+
"""
|
335 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
336 |
+
if n_rep == 1:
|
337 |
+
return hidden_states
|
338 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
339 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
340 |
+
|
341 |
+
|
342 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
343 |
+
class InternLM2Attention(nn.Module):
|
344 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
345 |
+
|
346 |
+
def __init__(self, config: InternLM2Config):
|
347 |
+
super().__init__()
|
348 |
+
self.config = config
|
349 |
+
self.hidden_size = config.hidden_size
|
350 |
+
self.num_heads = config.num_attention_heads
|
351 |
+
self.head_dim = self.hidden_size // self.num_heads
|
352 |
+
self.num_key_value_heads = config.num_key_value_heads
|
353 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
354 |
+
self.max_position_embeddings = config.max_position_embeddings
|
355 |
+
self.is_causal = True
|
356 |
+
|
357 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
358 |
+
raise ValueError(
|
359 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
360 |
+
f" and `num_heads`: {self.num_heads})."
|
361 |
+
)
|
362 |
+
|
363 |
+
# self.wqkv = nn.Linear(
|
364 |
+
# self.hidden_size,
|
365 |
+
# (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
366 |
+
# bias=config.bias,
|
367 |
+
# )
|
368 |
+
#
|
369 |
+
# self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
370 |
+
|
371 |
+
self.wqkv = PLoRA(
|
372 |
+
self.hidden_size,
|
373 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
374 |
+
bias=config.bias,
|
375 |
+
lora_r=256,
|
376 |
+
lora_alpha=256,
|
377 |
+
lora_len=576)
|
378 |
+
|
379 |
+
self.wo = PLoRA(
|
380 |
+
self.num_heads * self.head_dim,
|
381 |
+
self.hidden_size,
|
382 |
+
bias=config.bias,
|
383 |
+
lora_r=256,
|
384 |
+
lora_alpha=256,
|
385 |
+
lora_len=576)
|
386 |
+
self._init_rope()
|
387 |
+
|
388 |
+
def _init_rope(self):
|
389 |
+
if self.config.rope_scaling is None:
|
390 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
391 |
+
self.head_dim,
|
392 |
+
max_position_embeddings=self.max_position_embeddings,
|
393 |
+
base=self.config.rope_theta,
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
scaling_type = self.config.rope_scaling["type"]
|
397 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
398 |
+
if scaling_type == "dynamic":
|
399 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
400 |
+
self.head_dim,
|
401 |
+
max_position_embeddings=self.max_position_embeddings,
|
402 |
+
base=self.config.rope_theta,
|
403 |
+
scaling_factor=scaling_factor,
|
404 |
+
)
|
405 |
+
elif scaling_type == "linear":
|
406 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
407 |
+
self.head_dim,
|
408 |
+
max_position_embeddings=self.max_position_embeddings,
|
409 |
+
base=self.config.rope_theta,
|
410 |
+
scaling_factor=scaling_factor,
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
414 |
+
return self.rotary_emb
|
415 |
+
|
416 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
417 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
418 |
+
|
419 |
+
def forward(
|
420 |
+
self,
|
421 |
+
hidden_states: torch.Tensor,
|
422 |
+
attention_mask: Optional[torch.Tensor] = None,
|
423 |
+
position_ids: Optional[torch.LongTensor] = None,
|
424 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
425 |
+
output_attentions: bool = False,
|
426 |
+
use_cache: bool = False,
|
427 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
428 |
+
**kwargs,
|
429 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
430 |
+
if "padding_mask" in kwargs:
|
431 |
+
warnings.warn(
|
432 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
433 |
+
"Please make sure use `attention_mask` instead.`"
|
434 |
+
)
|
435 |
+
|
436 |
+
bsz, q_len, _ = hidden_states.size()
|
437 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
438 |
+
|
439 |
+
qkv_states = rearrange(
|
440 |
+
qkv_states,
|
441 |
+
"b q (h gs d) -> b q h gs d",
|
442 |
+
gs=2 + self.num_key_value_groups,
|
443 |
+
d=self.head_dim,
|
444 |
+
)
|
445 |
+
|
446 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
447 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
448 |
+
key_states = qkv_states[..., -2, :]
|
449 |
+
value_states = qkv_states[..., -1, :]
|
450 |
+
|
451 |
+
query_states = query_states.transpose(1, 2)
|
452 |
+
key_states = key_states.transpose(1, 2)
|
453 |
+
value_states = value_states.transpose(1, 2)
|
454 |
+
|
455 |
+
kv_seq_len = key_states.shape[-2]
|
456 |
+
if past_key_value is not None:
|
457 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
458 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
459 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
460 |
+
|
461 |
+
if past_key_value is not None:
|
462 |
+
# reuse k, v, self_attention
|
463 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
464 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
465 |
+
|
466 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
467 |
+
|
468 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
469 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
470 |
+
|
471 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
472 |
+
|
473 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
474 |
+
raise ValueError(
|
475 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
476 |
+
f" {attn_weights.size()}"
|
477 |
+
)
|
478 |
+
|
479 |
+
if attention_mask is not None:
|
480 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
481 |
+
raise ValueError(
|
482 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
483 |
+
)
|
484 |
+
attn_weights = attn_weights + attention_mask
|
485 |
+
|
486 |
+
# upcast attention to fp32
|
487 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
488 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
489 |
+
|
490 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
491 |
+
raise ValueError(
|
492 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
493 |
+
f" {attn_output.size()}"
|
494 |
+
)
|
495 |
+
|
496 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
497 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
498 |
+
|
499 |
+
attn_output = self.wo(attn_output, im_mask)
|
500 |
+
|
501 |
+
if not output_attentions:
|
502 |
+
attn_weights = None
|
503 |
+
|
504 |
+
return attn_output, attn_weights, past_key_value
|
505 |
+
|
506 |
+
|
507 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
508 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
509 |
+
"""
|
510 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
511 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
512 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
513 |
+
"""
|
514 |
+
|
515 |
+
def forward(
|
516 |
+
self,
|
517 |
+
hidden_states: torch.Tensor,
|
518 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
519 |
+
position_ids: Optional[torch.LongTensor] = None,
|
520 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
521 |
+
output_attentions: bool = False,
|
522 |
+
use_cache: bool = False,
|
523 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
524 |
+
**kwargs,
|
525 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
526 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
527 |
+
if "padding_mask" in kwargs:
|
528 |
+
warnings.warn(
|
529 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
530 |
+
"Please make sure use `attention_mask` instead.`"
|
531 |
+
)
|
532 |
+
|
533 |
+
# overwrite attention_mask with padding_mask
|
534 |
+
attention_mask = kwargs.pop("padding_mask")
|
535 |
+
|
536 |
+
output_attentions = False
|
537 |
+
|
538 |
+
bsz, q_len, _ = hidden_states.size()
|
539 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
540 |
+
|
541 |
+
qkv_states = rearrange(
|
542 |
+
qkv_states,
|
543 |
+
"b q (h gs d) -> b q h gs d",
|
544 |
+
gs=2 + self.num_key_value_groups,
|
545 |
+
d=self.head_dim,
|
546 |
+
)
|
547 |
+
|
548 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
549 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
550 |
+
key_states = qkv_states[..., -2, :]
|
551 |
+
value_states = qkv_states[..., -1, :]
|
552 |
+
|
553 |
+
query_states = query_states.transpose(1, 2)
|
554 |
+
key_states = key_states.transpose(1, 2)
|
555 |
+
value_states = value_states.transpose(1, 2)
|
556 |
+
|
557 |
+
kv_seq_len = key_states.shape[-2]
|
558 |
+
if past_key_value is not None:
|
559 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
560 |
+
|
561 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
562 |
+
|
563 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
564 |
+
|
565 |
+
if past_key_value is not None:
|
566 |
+
# reuse k, v, self_attention
|
567 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
568 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
569 |
+
|
570 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
571 |
+
|
572 |
+
query_states = query_states.transpose(1, 2)
|
573 |
+
key_states = key_states.transpose(1, 2)
|
574 |
+
value_states = value_states.transpose(1, 2)
|
575 |
+
|
576 |
+
attn_output = self._flash_attention_forward(
|
577 |
+
query_states, key_states, value_states, attention_mask, q_len
|
578 |
+
)
|
579 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
580 |
+
attn_output = self.wo(attn_output, im_mask)
|
581 |
+
|
582 |
+
if not output_attentions:
|
583 |
+
attn_weights = None
|
584 |
+
|
585 |
+
return attn_output, attn_weights, past_key_value
|
586 |
+
|
587 |
+
def _flash_attention_forward(
|
588 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
589 |
+
):
|
590 |
+
"""
|
591 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
592 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
query_states (`torch.Tensor`):
|
596 |
+
Input query states to be passed to Flash Attention API
|
597 |
+
key_states (`torch.Tensor`):
|
598 |
+
Input key states to be passed to Flash Attention API
|
599 |
+
value_states (`torch.Tensor`):
|
600 |
+
Input value states to be passed to Flash Attention API
|
601 |
+
attention_mask (`torch.Tensor`):
|
602 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
603 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
604 |
+
dropout (`int`, *optional*):
|
605 |
+
Attention dropout
|
606 |
+
softmax_scale (`float`, *optional*):
|
607 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
608 |
+
"""
|
609 |
+
# Contains at least one padding token in the sequence
|
610 |
+
causal = self.is_causal and query_length != 1
|
611 |
+
if attention_mask is not None:
|
612 |
+
batch_size = query_states.shape[0]
|
613 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
614 |
+
query_states, key_states, value_states, attention_mask, query_length
|
615 |
+
)
|
616 |
+
|
617 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
618 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
619 |
+
|
620 |
+
attn_output_unpad = flash_attn_varlen_func(
|
621 |
+
query_states,
|
622 |
+
key_states,
|
623 |
+
value_states,
|
624 |
+
cu_seqlens_q=cu_seqlens_q,
|
625 |
+
cu_seqlens_k=cu_seqlens_k,
|
626 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
627 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
628 |
+
dropout_p=dropout,
|
629 |
+
softmax_scale=softmax_scale,
|
630 |
+
causal=causal,
|
631 |
+
)
|
632 |
+
|
633 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
634 |
+
else:
|
635 |
+
attn_output = flash_attn_func(
|
636 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
637 |
+
)
|
638 |
+
|
639 |
+
return attn_output
|
640 |
+
|
641 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
642 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
643 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
644 |
+
|
645 |
+
key_layer = index_first_axis(
|
646 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
647 |
+
)
|
648 |
+
value_layer = index_first_axis(
|
649 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
650 |
+
)
|
651 |
+
|
652 |
+
if query_length == kv_seq_len:
|
653 |
+
query_layer = index_first_axis(
|
654 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
655 |
+
)
|
656 |
+
cu_seqlens_q = cu_seqlens_k
|
657 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
658 |
+
indices_q = indices_k
|
659 |
+
elif query_length == 1:
|
660 |
+
max_seqlen_in_batch_q = 1
|
661 |
+
cu_seqlens_q = torch.arange(
|
662 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
663 |
+
) # There is a memcpy here, that is very bad.
|
664 |
+
indices_q = cu_seqlens_q[:-1]
|
665 |
+
query_layer = query_layer.squeeze(1)
|
666 |
+
else:
|
667 |
+
# The -q_len: slice assumes left padding.
|
668 |
+
attention_mask = attention_mask[:, -query_length:]
|
669 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
670 |
+
|
671 |
+
return (
|
672 |
+
query_layer,
|
673 |
+
key_layer,
|
674 |
+
value_layer,
|
675 |
+
indices_q.to(torch.int64),
|
676 |
+
(cu_seqlens_q, cu_seqlens_k),
|
677 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
678 |
+
)
|
679 |
+
|
680 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
681 |
+
"eager": InternLM2Attention,
|
682 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
683 |
+
}
|
684 |
+
|
685 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
686 |
+
class InternLM2DecoderLayer(nn.Module):
|
687 |
+
def __init__(self, config: InternLM2Config):
|
688 |
+
super().__init__()
|
689 |
+
self.hidden_size = config.hidden_size
|
690 |
+
|
691 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
692 |
+
self.feed_forward = InternLM2MLP(config)
|
693 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
694 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
695 |
+
|
696 |
+
def forward(
|
697 |
+
self,
|
698 |
+
hidden_states: torch.Tensor,
|
699 |
+
attention_mask: Optional[torch.Tensor] = None,
|
700 |
+
position_ids: Optional[torch.LongTensor] = None,
|
701 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
702 |
+
output_attentions: Optional[bool] = False,
|
703 |
+
use_cache: Optional[bool] = False,
|
704 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
705 |
+
**kwargs,
|
706 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
707 |
+
"""
|
708 |
+
Args:
|
709 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
710 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
711 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
712 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
713 |
+
output_attentions (`bool`, *optional*):
|
714 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
715 |
+
returned tensors for more detail.
|
716 |
+
use_cache (`bool`, *optional*):
|
717 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
718 |
+
(see `past_key_values`).
|
719 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
720 |
+
"""
|
721 |
+
if "padding_mask" in kwargs:
|
722 |
+
warnings.warn(
|
723 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
724 |
+
"Please make sure use `attention_mask` instead.`"
|
725 |
+
)
|
726 |
+
|
727 |
+
residual = hidden_states
|
728 |
+
|
729 |
+
hidden_states = self.attention_norm(hidden_states)
|
730 |
+
# Self Attention
|
731 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
732 |
+
hidden_states=hidden_states,
|
733 |
+
attention_mask=attention_mask,
|
734 |
+
position_ids=position_ids,
|
735 |
+
past_key_value=past_key_value,
|
736 |
+
output_attentions=output_attentions,
|
737 |
+
use_cache=use_cache,
|
738 |
+
im_mask=im_mask,
|
739 |
+
**kwargs,
|
740 |
+
)
|
741 |
+
hidden_states = residual + hidden_states
|
742 |
+
|
743 |
+
# Fully Connected
|
744 |
+
residual = hidden_states
|
745 |
+
hidden_states = self.ffn_norm(hidden_states)
|
746 |
+
hidden_states = self.feed_forward(hidden_states, im_mask)
|
747 |
+
hidden_states = residual + hidden_states
|
748 |
+
|
749 |
+
outputs = (hidden_states,)
|
750 |
+
|
751 |
+
if output_attentions:
|
752 |
+
outputs += (self_attn_weights,)
|
753 |
+
|
754 |
+
if use_cache:
|
755 |
+
outputs += (present_key_value,)
|
756 |
+
|
757 |
+
return outputs
|
758 |
+
|
759 |
+
|
760 |
+
InternLM2_START_DOCSTRING = r"""
|
761 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
762 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
763 |
+
etc.)
|
764 |
+
|
765 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
766 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
767 |
+
and behavior.
|
768 |
+
|
769 |
+
Parameters:
|
770 |
+
config ([`InternLM2Config`]):
|
771 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
772 |
+
load the weights associated with the model, only the configuration. Check out the
|
773 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
774 |
+
"""
|
775 |
+
|
776 |
+
|
777 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
778 |
+
@add_start_docstrings(
|
779 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
780 |
+
InternLM2_START_DOCSTRING,
|
781 |
+
)
|
782 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
783 |
+
config_class = InternLM2Config
|
784 |
+
base_model_prefix = "model"
|
785 |
+
supports_gradient_checkpointing = True
|
786 |
+
_no_split_modules = ["InternLM2DecoderLayer"]
|
787 |
+
_skip_keys_device_placement = "past_key_values"
|
788 |
+
|
789 |
+
def _init_weights(self, module):
|
790 |
+
std = self.config.initializer_range
|
791 |
+
if isinstance(module, nn.Linear):
|
792 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
793 |
+
if module.bias is not None:
|
794 |
+
module.bias.data.zero_()
|
795 |
+
elif isinstance(module, nn.Embedding):
|
796 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
797 |
+
if module.padding_idx is not None:
|
798 |
+
module.weight.data[module.padding_idx].zero_()
|
799 |
+
|
800 |
+
|
801 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
802 |
+
Args:
|
803 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
804 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
805 |
+
it.
|
806 |
+
|
807 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
808 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
809 |
+
|
810 |
+
[What are input IDs?](../glossary#input-ids)
|
811 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
812 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
813 |
+
|
814 |
+
- 1 for tokens that are **not masked**,
|
815 |
+
- 0 for tokens that are **masked**.
|
816 |
+
|
817 |
+
[What are attention masks?](../glossary#attention-mask)
|
818 |
+
|
819 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
820 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
821 |
+
|
822 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
823 |
+
`past_key_values`).
|
824 |
+
|
825 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
826 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
827 |
+
information on the default strategy.
|
828 |
+
|
829 |
+
- 1 indicates the head is **not masked**,
|
830 |
+
- 0 indicates the head is **masked**.
|
831 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
832 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
833 |
+
config.n_positions - 1]`.
|
834 |
+
|
835 |
+
[What are position IDs?](../glossary#position-ids)
|
836 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
837 |
+
when `config.use_cache=True`):
|
838 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
839 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
840 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
841 |
+
|
842 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
843 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
844 |
+
|
845 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
846 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
847 |
+
of shape `(batch_size, sequence_length)`.
|
848 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
849 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
850 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
851 |
+
model's internal embedding lookup matrix.
|
852 |
+
use_cache (`bool`, *optional*):
|
853 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
854 |
+
`past_key_values`).
|
855 |
+
output_attentions (`bool`, *optional*):
|
856 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
857 |
+
tensors for more detail.
|
858 |
+
output_hidden_states (`bool`, *optional*):
|
859 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
860 |
+
more detail.
|
861 |
+
return_dict (`bool`, *optional*):
|
862 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
863 |
+
"""
|
864 |
+
|
865 |
+
|
866 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
867 |
+
@add_start_docstrings(
|
868 |
+
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
869 |
+
InternLM2_START_DOCSTRING,
|
870 |
+
)
|
871 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
872 |
+
"""
|
873 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
874 |
+
|
875 |
+
Args:
|
876 |
+
config: InternLM2Config
|
877 |
+
"""
|
878 |
+
|
879 |
+
_auto_class = "AutoModel"
|
880 |
+
|
881 |
+
def __init__(self, config: InternLM2Config):
|
882 |
+
super().__init__(config)
|
883 |
+
self.padding_idx = config.pad_token_id
|
884 |
+
self.vocab_size = config.vocab_size
|
885 |
+
self.config = config
|
886 |
+
|
887 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
888 |
+
|
889 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
890 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
891 |
+
|
892 |
+
self.gradient_checkpointing = False
|
893 |
+
# Initialize weights and apply final processing
|
894 |
+
self.post_init()
|
895 |
+
|
896 |
+
def get_input_embeddings(self):
|
897 |
+
return self.tok_embeddings
|
898 |
+
|
899 |
+
def set_input_embeddings(self, value):
|
900 |
+
self.tok_embeddings = value
|
901 |
+
|
902 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
903 |
+
# create causal mask
|
904 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
905 |
+
combined_attention_mask = None
|
906 |
+
if input_shape[-1] > 1:
|
907 |
+
combined_attention_mask = _make_causal_mask(
|
908 |
+
input_shape,
|
909 |
+
inputs_embeds.dtype,
|
910 |
+
device=inputs_embeds.device,
|
911 |
+
past_key_values_length=past_key_values_length,
|
912 |
+
)
|
913 |
+
|
914 |
+
if attention_mask is not None:
|
915 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
916 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
917 |
+
inputs_embeds.device
|
918 |
+
)
|
919 |
+
combined_attention_mask = (
|
920 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
921 |
+
)
|
922 |
+
|
923 |
+
return combined_attention_mask
|
924 |
+
|
925 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
926 |
+
def forward(
|
927 |
+
self,
|
928 |
+
input_ids: torch.LongTensor = None,
|
929 |
+
attention_mask: Optional[torch.Tensor] = None,
|
930 |
+
position_ids: Optional[torch.LongTensor] = None,
|
931 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
932 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
933 |
+
use_cache: Optional[bool] = None,
|
934 |
+
output_attentions: Optional[bool] = None,
|
935 |
+
output_hidden_states: Optional[bool] = None,
|
936 |
+
return_dict: Optional[bool] = None,
|
937 |
+
**kwargs
|
938 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
939 |
+
|
940 |
+
im_mask = kwargs.get('im_mask', None)
|
941 |
+
|
942 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
943 |
+
output_hidden_states = (
|
944 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
945 |
+
)
|
946 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
947 |
+
|
948 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
949 |
+
|
950 |
+
if self.config.attn_implementation == "flash_attention_2":
|
951 |
+
_import_flash_attn()
|
952 |
+
|
953 |
+
# retrieve input_ids and inputs_embeds
|
954 |
+
if input_ids is not None and inputs_embeds is not None:
|
955 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
956 |
+
elif input_ids is not None:
|
957 |
+
batch_size, seq_length = input_ids.shape[:2]
|
958 |
+
elif inputs_embeds is not None:
|
959 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
960 |
+
else:
|
961 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
962 |
+
|
963 |
+
seq_length_with_past = seq_length
|
964 |
+
past_key_values_length = 0
|
965 |
+
if past_key_values is not None:
|
966 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
967 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
968 |
+
|
969 |
+
if position_ids is None:
|
970 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
971 |
+
position_ids = torch.arange(
|
972 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
973 |
+
)
|
974 |
+
position_ids = position_ids.unsqueeze(0)
|
975 |
+
|
976 |
+
if inputs_embeds is None:
|
977 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
978 |
+
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
|
979 |
+
inputs_embeds.device).bool()
|
980 |
+
|
981 |
+
if self.config.attn_implementation == "flash_attention_2":
|
982 |
+
# 2d mask is passed through the layers
|
983 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
984 |
+
else:
|
985 |
+
if attention_mask is None:
|
986 |
+
attention_mask = torch.ones(
|
987 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
988 |
+
)
|
989 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
990 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
991 |
+
)
|
992 |
+
|
993 |
+
# embed positions
|
994 |
+
hidden_states = inputs_embeds
|
995 |
+
|
996 |
+
if self.gradient_checkpointing and self.training:
|
997 |
+
if use_cache:
|
998 |
+
logger.warning_once(
|
999 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1000 |
+
)
|
1001 |
+
use_cache = False
|
1002 |
+
|
1003 |
+
# decoder layers
|
1004 |
+
all_hidden_states = () if output_hidden_states else None
|
1005 |
+
all_self_attns = () if output_attentions else None
|
1006 |
+
next_decoder_cache = () if use_cache else None
|
1007 |
+
|
1008 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1009 |
+
if output_hidden_states:
|
1010 |
+
all_hidden_states += (hidden_states,)
|
1011 |
+
|
1012 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1013 |
+
|
1014 |
+
if self.gradient_checkpointing and self.training:
|
1015 |
+
|
1016 |
+
def create_custom_forward(module):
|
1017 |
+
def custom_forward(*inputs):
|
1018 |
+
# None for past_key_value
|
1019 |
+
return module(*inputs, output_attentions, None, im_mask)
|
1020 |
+
|
1021 |
+
return custom_forward
|
1022 |
+
|
1023 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1024 |
+
create_custom_forward(decoder_layer),
|
1025 |
+
hidden_states,
|
1026 |
+
attention_mask,
|
1027 |
+
position_ids,
|
1028 |
+
None,
|
1029 |
+
)
|
1030 |
+
else:
|
1031 |
+
layer_outputs = decoder_layer(
|
1032 |
+
hidden_states,
|
1033 |
+
attention_mask=attention_mask,
|
1034 |
+
position_ids=position_ids,
|
1035 |
+
past_key_value=past_key_value,
|
1036 |
+
output_attentions=output_attentions,
|
1037 |
+
use_cache=use_cache,
|
1038 |
+
im_mask=im_mask,
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
hidden_states = layer_outputs[0]
|
1042 |
+
|
1043 |
+
if use_cache:
|
1044 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1045 |
+
|
1046 |
+
if output_attentions:
|
1047 |
+
all_self_attns += (layer_outputs[1],)
|
1048 |
+
|
1049 |
+
hidden_states = self.norm(hidden_states)
|
1050 |
+
|
1051 |
+
# add hidden states from the last decoder layer
|
1052 |
+
if output_hidden_states:
|
1053 |
+
all_hidden_states += (hidden_states,)
|
1054 |
+
|
1055 |
+
next_cache = next_decoder_cache if use_cache else None
|
1056 |
+
if not return_dict:
|
1057 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1058 |
+
return BaseModelOutputWithPast(
|
1059 |
+
last_hidden_state=hidden_states,
|
1060 |
+
past_key_values=next_cache,
|
1061 |
+
hidden_states=all_hidden_states,
|
1062 |
+
attentions=all_self_attns,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
|
1066 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
1067 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1068 |
+
_auto_class = "AutoModelForCausalLM"
|
1069 |
+
|
1070 |
+
_tied_weights_keys = ["output.weight"]
|
1071 |
+
|
1072 |
+
def __init__(self, config):
|
1073 |
+
super().__init__(config)
|
1074 |
+
self.model = InternLM2Model(config)
|
1075 |
+
self.vocab_size = config.vocab_size
|
1076 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1077 |
+
|
1078 |
+
# Initialize weights and apply final processing
|
1079 |
+
self.post_init()
|
1080 |
+
|
1081 |
+
def get_input_embeddings(self):
|
1082 |
+
return self.model.tok_embeddings
|
1083 |
+
|
1084 |
+
def set_input_embeddings(self, value):
|
1085 |
+
self.model.tok_embeddings = value
|
1086 |
+
|
1087 |
+
def get_output_embeddings(self):
|
1088 |
+
return self.output
|
1089 |
+
|
1090 |
+
def set_output_embeddings(self, new_embeddings):
|
1091 |
+
self.output = new_embeddings
|
1092 |
+
|
1093 |
+
def set_decoder(self, decoder):
|
1094 |
+
self.model = decoder
|
1095 |
+
|
1096 |
+
def get_decoder(self):
|
1097 |
+
return self.model
|
1098 |
+
|
1099 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1100 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1101 |
+
def forward(
|
1102 |
+
self,
|
1103 |
+
input_ids: torch.LongTensor = None,
|
1104 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1105 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1106 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1107 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1108 |
+
labels: Optional[torch.LongTensor] = None,
|
1109 |
+
use_cache: Optional[bool] = None,
|
1110 |
+
output_attentions: Optional[bool] = None,
|
1111 |
+
output_hidden_states: Optional[bool] = None,
|
1112 |
+
return_dict: Optional[bool] = None,
|
1113 |
+
im_mask: Optional[torch.Tensor] = None,
|
1114 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1115 |
+
r"""
|
1116 |
+
Args:
|
1117 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1118 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1119 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1120 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1121 |
+
|
1122 |
+
Returns:
|
1123 |
+
|
1124 |
+
Example:
|
1125 |
+
|
1126 |
+
```python
|
1127 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1128 |
+
|
1129 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1130 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1131 |
+
|
1132 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1133 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1134 |
+
|
1135 |
+
>>> # Generate
|
1136 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1137 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1138 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1139 |
+
```"""
|
1140 |
+
|
1141 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1142 |
+
output_hidden_states = (
|
1143 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1144 |
+
)
|
1145 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1146 |
+
|
1147 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1148 |
+
outputs = self.model(
|
1149 |
+
input_ids=input_ids,
|
1150 |
+
attention_mask=attention_mask,
|
1151 |
+
position_ids=position_ids,
|
1152 |
+
past_key_values=past_key_values,
|
1153 |
+
inputs_embeds=inputs_embeds,
|
1154 |
+
use_cache=use_cache,
|
1155 |
+
output_attentions=output_attentions,
|
1156 |
+
output_hidden_states=output_hidden_states,
|
1157 |
+
return_dict=return_dict,
|
1158 |
+
im_mask=im_mask,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
hidden_states = outputs[0]
|
1162 |
+
logits = self.output(hidden_states)
|
1163 |
+
logits = logits.float()
|
1164 |
+
|
1165 |
+
loss = None
|
1166 |
+
if labels is not None:
|
1167 |
+
# Shift so that tokens < n predict n
|
1168 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1169 |
+
shift_labels = labels[..., 1:].contiguous()
|
1170 |
+
# Flatten the tokens
|
1171 |
+
loss_fct = CrossEntropyLoss()
|
1172 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1173 |
+
shift_labels = shift_labels.view(-1)
|
1174 |
+
# Enable model parallelism
|
1175 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1176 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1177 |
+
|
1178 |
+
if not return_dict:
|
1179 |
+
output = (logits,) + outputs[1:]
|
1180 |
+
return (loss,) + output if loss is not None else output
|
1181 |
+
|
1182 |
+
return CausalLMOutputWithPast(
|
1183 |
+
loss=loss,
|
1184 |
+
logits=logits,
|
1185 |
+
past_key_values=outputs.past_key_values,
|
1186 |
+
hidden_states=outputs.hidden_states,
|
1187 |
+
attentions=outputs.attentions,
|
1188 |
+
)
|
1189 |
+
|
1190 |
+
def prepare_inputs_for_generation(
|
1191 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1192 |
+
):
|
1193 |
+
if past_key_values is not None:
|
1194 |
+
past_length = past_key_values[0][0].shape[2]
|
1195 |
+
|
1196 |
+
# Some generation methods already pass only the last input ID
|
1197 |
+
if input_ids.shape[1] > past_length:
|
1198 |
+
remove_prefix_length = past_length
|
1199 |
+
else:
|
1200 |
+
# Default to old behavior: keep only final ID
|
1201 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1202 |
+
|
1203 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1204 |
+
|
1205 |
+
position_ids = kwargs.get("position_ids", None)
|
1206 |
+
if attention_mask is not None and position_ids is None:
|
1207 |
+
# create position_ids on the fly for batch generation
|
1208 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1209 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1210 |
+
if past_key_values:
|
1211 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1212 |
+
|
1213 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1214 |
+
if inputs_embeds is not None and past_key_values is None:
|
1215 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1216 |
+
else:
|
1217 |
+
model_inputs = {"input_ids": input_ids}
|
1218 |
+
|
1219 |
+
model_inputs.update(
|
1220 |
+
{
|
1221 |
+
"position_ids": position_ids,
|
1222 |
+
"past_key_values": past_key_values,
|
1223 |
+
"use_cache": kwargs.get("use_cache"),
|
1224 |
+
"attention_mask": attention_mask,
|
1225 |
+
"im_mask": kwargs.get("im_mask", None),
|
1226 |
+
}
|
1227 |
+
)
|
1228 |
+
return model_inputs
|
1229 |
+
|
1230 |
+
@staticmethod
|
1231 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1232 |
+
reordered_past = ()
|
1233 |
+
for layer_past in past_key_values:
|
1234 |
+
reordered_past += (
|
1235 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1236 |
+
)
|
1237 |
+
return reordered_past
|
1238 |
+
|
1239 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
|
1240 |
+
if tokenizer.add_bos_token:
|
1241 |
+
prompt = ""
|
1242 |
+
else:
|
1243 |
+
prompt = tokenizer.bos_token
|
1244 |
+
if meta_instruction:
|
1245 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1246 |
+
for record in history:
|
1247 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1248 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1249 |
+
return tokenizer([prompt], return_tensors="pt")
|
1250 |
+
|
1251 |
+
@torch.no_grad()
|
1252 |
+
def chat(
|
1253 |
+
self,
|
1254 |
+
tokenizer,
|
1255 |
+
query: str,
|
1256 |
+
history: List[Tuple[str, str]] = [],
|
1257 |
+
streamer: Optional[BaseStreamer] = None,
|
1258 |
+
max_new_tokens: int = 1024,
|
1259 |
+
do_sample: bool = True,
|
1260 |
+
temperature: float = 0.8,
|
1261 |
+
top_p: float = 0.8,
|
1262 |
+
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1263 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1264 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
|
1265 |
+
**kwargs,
|
1266 |
+
):
|
1267 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1268 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1269 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1270 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
|
1271 |
+
outputs = self.generate(
|
1272 |
+
**inputs,
|
1273 |
+
streamer=streamer,
|
1274 |
+
max_new_tokens=max_new_tokens,
|
1275 |
+
do_sample=do_sample,
|
1276 |
+
temperature=temperature,
|
1277 |
+
top_p=top_p,
|
1278 |
+
eos_token_id=eos_token_id,
|
1279 |
+
**kwargs,
|
1280 |
+
)
|
1281 |
+
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1282 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1283 |
+
response = response.split("<|im_end|>")[0]
|
1284 |
+
history = history + [(query, response)]
|
1285 |
+
return response, history
|
1286 |
+
|
1287 |
+
@torch.no_grad()
|
1288 |
+
def stream_chat(
|
1289 |
+
self,
|
1290 |
+
tokenizer,
|
1291 |
+
query: str,
|
1292 |
+
history: List[Tuple[str, str]] = [],
|
1293 |
+
max_new_tokens: int = 1024,
|
1294 |
+
do_sample: bool = True,
|
1295 |
+
temperature: float = 0.8,
|
1296 |
+
top_p: float = 0.8,
|
1297 |
+
**kwargs,
|
1298 |
+
):
|
1299 |
+
"""
|
1300 |
+
Return a generator in format: (response, history)
|
1301 |
+
Eg.
|
1302 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1303 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1304 |
+
"""
|
1305 |
+
if BaseStreamer is None:
|
1306 |
+
raise ModuleNotFoundError(
|
1307 |
+
"The version of `transformers` is too low. Please make sure "
|
1308 |
+
"that you have installed `transformers>=4.28.0`."
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
response_queue = queue.Queue(maxsize=20)
|
1312 |
+
|
1313 |
+
class ChatStreamer(BaseStreamer):
|
1314 |
+
def __init__(self, tokenizer) -> None:
|
1315 |
+
super().__init__()
|
1316 |
+
self.tokenizer = tokenizer
|
1317 |
+
self.queue = response_queue
|
1318 |
+
self.query = query
|
1319 |
+
self.history = history
|
1320 |
+
self.response = ""
|
1321 |
+
self.cache = []
|
1322 |
+
self.received_inputs = False
|
1323 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1324 |
+
|
1325 |
+
def put(self, value):
|
1326 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1327 |
+
raise ValueError("ChatStreamer only supports batch size 1")
|
1328 |
+
elif len(value.shape) > 1:
|
1329 |
+
value = value[0]
|
1330 |
+
|
1331 |
+
if not self.received_inputs:
|
1332 |
+
# The first received value is input_ids, ignore here
|
1333 |
+
self.received_inputs = True
|
1334 |
+
return
|
1335 |
+
|
1336 |
+
self.cache.extend(value.tolist())
|
1337 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1338 |
+
if token.strip() != "<|im_end|>":
|
1339 |
+
self.response = self.response + token
|
1340 |
+
history = self.history + [(self.query, self.response)]
|
1341 |
+
self.queue.put((self.response, history))
|
1342 |
+
self.cache = []
|
1343 |
+
else:
|
1344 |
+
self.end()
|
1345 |
+
|
1346 |
+
def end(self):
|
1347 |
+
self.queue.put(None)
|
1348 |
+
|
1349 |
+
def stream_producer():
|
1350 |
+
return self.chat(
|
1351 |
+
tokenizer=tokenizer,
|
1352 |
+
query=query,
|
1353 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1354 |
+
history=history,
|
1355 |
+
max_new_tokens=max_new_tokens,
|
1356 |
+
do_sample=do_sample,
|
1357 |
+
temperature=temperature,
|
1358 |
+
top_p=top_p,
|
1359 |
+
**kwargs,
|
1360 |
+
)
|
1361 |
+
|
1362 |
+
def consumer():
|
1363 |
+
producer = threading.Thread(target=stream_producer)
|
1364 |
+
producer.start()
|
1365 |
+
while True:
|
1366 |
+
res = response_queue.get()
|
1367 |
+
if res is None:
|
1368 |
+
return
|
1369 |
+
yield res
|
1370 |
+
|
1371 |
+
return consumer()
|
1372 |
+
|
1373 |
+
|
1374 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1375 |
+
@add_start_docstrings(
|
1376 |
+
"""
|
1377 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1378 |
+
|
1379 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1380 |
+
as other causal models (e.g. GPT-2) do.
|
1381 |
+
|
1382 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1383 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1384 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1385 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1386 |
+
each row of the batch).
|
1387 |
+
""",
|
1388 |
+
InternLM2_START_DOCSTRING,
|
1389 |
+
)
|
1390 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1391 |
+
def __init__(self, config):
|
1392 |
+
super().__init__(config)
|
1393 |
+
self.num_labels = config.num_labels
|
1394 |
+
self.model = InternLM2Model(config)
|
1395 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1396 |
+
|
1397 |
+
# Initialize weights and apply final processing
|
1398 |
+
self.post_init()
|
1399 |
+
|
1400 |
+
def get_input_embeddings(self):
|
1401 |
+
return self.model.tok_embeddings
|
1402 |
+
|
1403 |
+
def set_input_embeddings(self, value):
|
1404 |
+
self.model.tok_embeddings = value
|
1405 |
+
|
1406 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1407 |
+
def forward(
|
1408 |
+
self,
|
1409 |
+
input_ids: torch.LongTensor = None,
|
1410 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1411 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1412 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1413 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1414 |
+
labels: Optional[torch.LongTensor] = None,
|
1415 |
+
use_cache: Optional[bool] = None,
|
1416 |
+
output_attentions: Optional[bool] = None,
|
1417 |
+
output_hidden_states: Optional[bool] = None,
|
1418 |
+
return_dict: Optional[bool] = None,
|
1419 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1420 |
+
r"""
|
1421 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1422 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1423 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1424 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1425 |
+
"""
|
1426 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1427 |
+
|
1428 |
+
transformer_outputs = self.model(
|
1429 |
+
input_ids,
|
1430 |
+
attention_mask=attention_mask,
|
1431 |
+
position_ids=position_ids,
|
1432 |
+
past_key_values=past_key_values,
|
1433 |
+
inputs_embeds=inputs_embeds,
|
1434 |
+
use_cache=use_cache,
|
1435 |
+
output_attentions=output_attentions,
|
1436 |
+
output_hidden_states=output_hidden_states,
|
1437 |
+
return_dict=return_dict,
|
1438 |
+
)
|
1439 |
+
hidden_states = transformer_outputs[0]
|
1440 |
+
logits = self.score(hidden_states)
|
1441 |
+
|
1442 |
+
if input_ids is not None:
|
1443 |
+
batch_size = input_ids.shape[0]
|
1444 |
+
else:
|
1445 |
+
batch_size = inputs_embeds.shape[0]
|
1446 |
+
|
1447 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1448 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1449 |
+
if self.config.pad_token_id is None:
|
1450 |
+
sequence_lengths = -1
|
1451 |
+
else:
|
1452 |
+
if input_ids is not None:
|
1453 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1454 |
+
logits.device
|
1455 |
+
)
|
1456 |
+
else:
|
1457 |
+
sequence_lengths = -1
|
1458 |
+
|
1459 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1460 |
+
|
1461 |
+
loss = None
|
1462 |
+
if labels is not None:
|
1463 |
+
labels = labels.to(logits.device)
|
1464 |
+
if self.config.problem_type is None:
|
1465 |
+
if self.num_labels == 1:
|
1466 |
+
self.config.problem_type = "regression"
|
1467 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1468 |
+
self.config.problem_type = "single_label_classification"
|
1469 |
+
else:
|
1470 |
+
self.config.problem_type = "multi_label_classification"
|
1471 |
+
|
1472 |
+
if self.config.problem_type == "regression":
|
1473 |
+
loss_fct = MSELoss()
|
1474 |
+
if self.num_labels == 1:
|
1475 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1476 |
+
else:
|
1477 |
+
loss = loss_fct(pooled_logits, labels)
|
1478 |
+
elif self.config.problem_type == "single_label_classification":
|
1479 |
+
loss_fct = CrossEntropyLoss()
|
1480 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1481 |
+
elif self.config.problem_type == "multi_label_classification":
|
1482 |
+
loss_fct = BCEWithLogitsLoss()
|
1483 |
+
loss = loss_fct(pooled_logits, labels)
|
1484 |
+
if not return_dict:
|
1485 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1486 |
+
return ((loss,) + output) if loss is not None else output
|
1487 |
+
|
1488 |
+
return SequenceClassifierOutputWithPast(
|
1489 |
+
loss=loss,
|
1490 |
+
logits=pooled_logits,
|
1491 |
+
past_key_values=transformer_outputs.past_key_values,
|
1492 |
+
hidden_states=transformer_outputs.hidden_states,
|
1493 |
+
attentions=transformer_outputs.attentions,
|
1494 |
+
)
|
modeling_projector.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
|
7 |
+
from .configuration_projector import ProjectorConfig
|
8 |
+
|
9 |
+
|
10 |
+
class ProjectorModel(PreTrainedModel):
|
11 |
+
_auto_class = 'AutoModel'
|
12 |
+
config_class = ProjectorConfig
|
13 |
+
base_model_prefix = 'model'
|
14 |
+
supports_gradient_checkpointing = True
|
15 |
+
|
16 |
+
def __init__(self, config: ProjectorConfig) -> None:
|
17 |
+
super().__init__(config)
|
18 |
+
self.gradient_checkpointing = False
|
19 |
+
|
20 |
+
modules = [
|
21 |
+
nn.Linear(
|
22 |
+
config.visual_hidden_size,
|
23 |
+
config.llm_hidden_size,
|
24 |
+
bias=config.bias)
|
25 |
+
]
|
26 |
+
for _ in range(1, config.depth):
|
27 |
+
modules.append(ACT2FN[config.hidden_act])
|
28 |
+
modules.append(
|
29 |
+
nn.Linear(
|
30 |
+
config.llm_hidden_size,
|
31 |
+
config.llm_hidden_size,
|
32 |
+
bias=config.bias))
|
33 |
+
self.model = nn.Sequential(*modules)
|
34 |
+
|
35 |
+
def enable_input_require_grads(self):
|
36 |
+
|
37 |
+
def make_inputs_require_grad(module, input, output):
|
38 |
+
output.requires_grad_(True)
|
39 |
+
|
40 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
41 |
+
|
42 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
43 |
+
if isinstance(module, ProjectorModel):
|
44 |
+
module.gradient_checkpointing = value
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
if self.gradient_checkpointing and self.training:
|
48 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(self.model, x)
|
49 |
+
else:
|
50 |
+
layer_outputs = self.model(x)
|
51 |
+
return layer_outputs
|
modeling_wemm.py
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
import torch
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
from torch import nn
|
6 |
+
from transformers import PreTrainedModel
|
7 |
+
from transformers.activations import ACT2FN
|
8 |
+
from transformers.cache_utils import Cache
|
9 |
+
from transformers.modeling_outputs import ModelOutput
|
10 |
+
from transformers.utils import (
|
11 |
+
add_start_docstrings,
|
12 |
+
add_start_docstrings_to_model_forward,
|
13 |
+
logging,
|
14 |
+
replace_return_docstrings,
|
15 |
+
)
|
16 |
+
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, AutoConfig
|
17 |
+
from .configuration_wemm import WeMMConfig
|
18 |
+
from .vision_model import Idefics2VisionTransformer
|
19 |
+
from .connector import Idefics2Connector
|
20 |
+
from .image_processor import Idefics2ImageProcessor
|
21 |
+
from .modeling_downsampler import DownsamplerModel
|
22 |
+
from .modeling_projector import ProjectorModel
|
23 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
24 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
25 |
+
from peft import PeftModel
|
26 |
+
from peft import PeftConfig
|
27 |
+
import os
|
28 |
+
from PIL import Image
|
29 |
+
import numpy as np
|
30 |
+
IMAGE_TOKEN_INDEX = -200
|
31 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
32 |
+
IGNORE_INDEX = -100
|
33 |
+
from transformers import StoppingCriteria
|
34 |
+
from transformers import PreTrainedTokenizerFast, StoppingCriteriaList
|
35 |
+
import torch.nn.functional as F
|
36 |
+
class StopWordStoppingCriteria(StoppingCriteria):
|
37 |
+
"""StopWord stopping criteria."""
|
38 |
+
def __init__(self, tokenizer, stop_word):
|
39 |
+
self.tokenizer = tokenizer
|
40 |
+
self.stop_word = stop_word
|
41 |
+
self.length = len(self.stop_word)
|
42 |
+
def __call__(self, input_ids, *args, **kwargs) -> bool:
|
43 |
+
cur_text = self.tokenizer.decode(input_ids[0])
|
44 |
+
cur_text = cur_text.replace('\r', '').replace('\n', '')
|
45 |
+
return cur_text[-self.length:] == self.stop_word
|
46 |
+
def get_stop_criteria(
|
47 |
+
tokenizer,
|
48 |
+
stop_words=[],
|
49 |
+
):
|
50 |
+
stop_criteria = StoppingCriteriaList()
|
51 |
+
for word in stop_words:
|
52 |
+
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
|
53 |
+
return stop_criteria
|
54 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
55 |
+
assert embed_dim % 2 == 0
|
56 |
+
# use half of dimensions to encode grid_h
|
57 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H, W, D/2)
|
58 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H, W, D/2)
|
59 |
+
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
|
60 |
+
return emb
|
61 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
62 |
+
"""
|
63 |
+
embed_dim: output dimension for each position
|
64 |
+
pos: a list of positions to be encoded: size (M,)
|
65 |
+
out: (M, D)
|
66 |
+
"""
|
67 |
+
assert embed_dim % 2 == 0
|
68 |
+
omega = np.arange(embed_dim // 2, dtype=np.float)
|
69 |
+
omega /= embed_dim / 2.
|
70 |
+
omega = 1. / 10000**omega # (D/2,)
|
71 |
+
pos = np.squeeze(pos) # (1, H, W) -> (H, W)
|
72 |
+
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
|
73 |
+
emb_sin = np.sin(out) # (H, W, D/2)
|
74 |
+
emb_cos = np.cos(out) # (H, W, D/2)
|
75 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
|
76 |
+
return emb
|
77 |
+
# 2D sine-cosine position embedding
|
78 |
+
# References:
|
79 |
+
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
|
80 |
+
# MoCo v3: https://github.com/facebookresearch/moco-v3
|
81 |
+
# --------------------------------------------------------
|
82 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False):
|
83 |
+
"""
|
84 |
+
grid_size: int of the grid height and width
|
85 |
+
return:
|
86 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
87 |
+
"""
|
88 |
+
grid_h = np.arange(grid_size_h, dtype=np.float32)
|
89 |
+
grid_w = np.arange(grid_size_w, dtype=np.float32)
|
90 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
91 |
+
grid = np.stack(grid, axis=0)
|
92 |
+
grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
|
93 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
94 |
+
if cls_token:
|
95 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
96 |
+
return pos_embed
|
97 |
+
def recover_navit_subimages_with_pos_emb(
|
98 |
+
sub_image_hidden_states,
|
99 |
+
attention_mask,
|
100 |
+
num_sub_images,
|
101 |
+
visual_embedding_group,
|
102 |
+
pos_hidden_size,
|
103 |
+
thumbnail_only=False):
|
104 |
+
_slice = int(np.sqrt(num_sub_images))
|
105 |
+
N, L, D = sub_image_hidden_states.shape
|
106 |
+
_, H, W = attention_mask.shape
|
107 |
+
if thumbnail_only is True:
|
108 |
+
num_sub_images += 1
|
109 |
+
sub_image_hidden_states = sub_image_hidden_states.reshape(-1, num_sub_images, H, W, D)
|
110 |
+
attention_mask = attention_mask.reshape(-1, num_sub_images, H, W)
|
111 |
+
if thumbnail_only is True:
|
112 |
+
sub_image_hidden_states = sub_image_hidden_states[:, -1:, :, :, :]
|
113 |
+
attention_mask = attention_mask[:, -1:, :, :]
|
114 |
+
_slice = 1
|
115 |
+
def _infer_ori_image_patch_shape(sub_image_attention_mask):
|
116 |
+
ind_h, ind_w = torch.where(sub_image_attention_mask > 0)
|
117 |
+
return torch.max(ind_h) + 1, torch.max(ind_w) + 1
|
118 |
+
def _pad_to_same(image_hidden):
|
119 |
+
_dtype = image_hidden.dtype
|
120 |
+
visual_downsample_stride = int(np.sqrt(visual_embedding_group))
|
121 |
+
full_h, full_w, _ = image_hidden.shape
|
122 |
+
target_h, target_w = H * _slice, W * _slice
|
123 |
+
# ensure all contents are included during downsampling
|
124 |
+
to_pad_h = (target_h - full_h) + (
|
125 |
+
visual_downsample_stride - target_h % visual_downsample_stride) % visual_downsample_stride
|
126 |
+
to_pad_w = (target_w - full_w) + (
|
127 |
+
visual_downsample_stride - target_w % visual_downsample_stride) % visual_downsample_stride
|
128 |
+
# (H,W,D) -> (1,D,H,W) to support replicate padding
|
129 |
+
image_hidden = image_hidden.permute(2, 0, 1).unsqueeze(0)
|
130 |
+
pad_size = (0, to_pad_w, 0, to_pad_h)
|
131 |
+
# (1,D,H,W) -> (H,W,D)
|
132 |
+
image_hidden = F.pad(image_hidden.to(torch.float32), pad_size, mode='replicate').squeeze(0).permute(1, 2, 0)
|
133 |
+
return image_hidden.to(_dtype)
|
134 |
+
image_hidden_states = list()
|
135 |
+
valid_image_token = list()
|
136 |
+
image_2d_pos = list()
|
137 |
+
for batch_id in range(len(sub_image_hidden_states)):
|
138 |
+
ori_h, ori_w = _infer_ori_image_patch_shape(attention_mask[batch_id][0])
|
139 |
+
full_h, full_w = ori_h * _slice, ori_w * _slice
|
140 |
+
# (S,H,W,D) -> (S_h,S_w,H,W,D) -> (S_h,H,S_w,W,D) -> (S_h*H,S_w*W,D)
|
141 |
+
this_image_hidden = sub_image_hidden_states[batch_id][:, 0:ori_h, 0:ori_w, :] \
|
142 |
+
.view(_slice, _slice, ori_h, ori_w, D).permute(0, 2, 1, 3, 4).contiguous().view(full_h, full_w, D)
|
143 |
+
pos_emb = get_2d_sincos_pos_embed(pos_hidden_size, grid_size_h=full_h,
|
144 |
+
grid_size_w=full_w) # (H, W, D)
|
145 |
+
pos_emb = torch.tensor(pos_emb, dtype=this_image_hidden.dtype, device=this_image_hidden.device)
|
146 |
+
image_hidden_states.append(_pad_to_same(this_image_hidden))
|
147 |
+
image_2d_pos.append(_pad_to_same(pos_emb))
|
148 |
+
valid_image_token.append([full_h, full_w])
|
149 |
+
image_hidden_states = torch.stack(image_hidden_states)
|
150 |
+
image_2d_pos = torch.stack(image_2d_pos)
|
151 |
+
valid_image_token = torch.tensor(valid_image_token, dtype=torch.int64)
|
152 |
+
return image_hidden_states, image_2d_pos, valid_image_token
|
153 |
+
def visiual_token_downsample(
|
154 |
+
visual_downsampler,
|
155 |
+
image_hidden_states,
|
156 |
+
valid_image_token,
|
157 |
+
visual_embedding_group,
|
158 |
+
image_2d_pos):
|
159 |
+
if image_2d_pos is not None:
|
160 |
+
image_hidden_states = image_hidden_states + image_2d_pos
|
161 |
+
image_hidden_states = visual_downsampler(image_hidden_states)
|
162 |
+
valid_image_token = torch.ceil(valid_image_token / np.sqrt(visual_embedding_group)).to(torch.int64)
|
163 |
+
return image_hidden_states, valid_image_token
|
164 |
+
def merge_native_qformer(
|
165 |
+
clip_embeddings_native_patch,
|
166 |
+
valid_image_token_shape,
|
167 |
+
clip_embeddings_qformer,
|
168 |
+
visual_source_spliter,
|
169 |
+
num_sub_images):
|
170 |
+
assert clip_embeddings_native_patch.size(0) == valid_image_token_shape.size(0) == clip_embeddings_qformer.size(0)
|
171 |
+
def add_split_token_for_qformer_token(qformer_emb):
|
172 |
+
# + 1 for thumbnail
|
173 |
+
len_per_token = int(qformer_emb.size(0) // (num_sub_images + 1))
|
174 |
+
qformer_emb_with_spliter = list()
|
175 |
+
for i in range(num_sub_images + 1):
|
176 |
+
qformer_emb_with_spliter.append(
|
177 |
+
visual_source_spliter(torch.tensor([2 * i]).to(visual_source_spliter.weight.device))
|
178 |
+
)
|
179 |
+
qformer_emb_with_spliter.append(qformer_emb[i * len_per_token:(i + 1) * len_per_token])
|
180 |
+
qformer_emb_with_spliter.append(
|
181 |
+
visual_source_spliter(torch.tensor([2 * i + 1]).to(visual_source_spliter.weight.device))
|
182 |
+
)
|
183 |
+
return torch.cat(qformer_emb_with_spliter, dim=0)
|
184 |
+
merged_visual_embeddings = list()
|
185 |
+
for batch_id in range(clip_embeddings_native_patch.size(0)):
|
186 |
+
h, w = valid_image_token_shape[batch_id]
|
187 |
+
native_patch_emb = clip_embeddings_native_patch[batch_id][:h, :w, :].reshape(h*w, -1)
|
188 |
+
qformer_emb = clip_embeddings_qformer[batch_id]
|
189 |
+
qformer_emb = add_split_token_for_qformer_token(qformer_emb)
|
190 |
+
merged_visual_embeddings.append(
|
191 |
+
torch.cat(
|
192 |
+
[visual_source_spliter(torch.tensor([10]).to(visual_source_spliter.weight.device)),
|
193 |
+
native_patch_emb,
|
194 |
+
visual_source_spliter(torch.tensor([11]).to(visual_source_spliter.weight.device)),
|
195 |
+
qformer_emb],
|
196 |
+
dim=0))
|
197 |
+
return merged_visual_embeddings
|
198 |
+
class WemmForConditionalGeneration(PreTrainedModel):
|
199 |
+
config_class = WeMMConfig
|
200 |
+
def __init__(self, config: WeMMConfig):
|
201 |
+
super().__init__(config)
|
202 |
+
self.vision_tower = Idefics2VisionTransformer(config.vision_config)
|
203 |
+
self.image_processor = Idefics2ImageProcessor(config.image_processor)
|
204 |
+
self.connector = Idefics2Connector(config.connector_config)
|
205 |
+
self.projector = ProjectorModel(config.projector_config)
|
206 |
+
self.language_model = InternLM2ForCausalLM(config.text_config)
|
207 |
+
self.tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-chat-7b", trust_remote_code=True, encode_special_tokens=True)
|
208 |
+
self.downsampler = DownsamplerModel(config.downsampler_config)
|
209 |
+
self.visual_source_spliter_emb = torch.nn.Embedding(**config.spliter_emb_config)
|
210 |
+
self.gen_config = GenerationConfig(
|
211 |
+
max_new_tokens=512,
|
212 |
+
do_sample=False,
|
213 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
214 |
+
pad_token_id=self.tokenizer.pad_token_id
|
215 |
+
if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id,
|
216 |
+
)
|
217 |
+
self.do_image_splitting = config.do_image_splitting
|
218 |
+
self.stop_criteria = get_stop_criteria(
|
219 |
+
tokenizer=self.tokenizer, stop_words=['<|im_end|>'])
|
220 |
+
self.config = config
|
221 |
+
def mm_generate(self, image_path, prompt, gen_config=None):
|
222 |
+
prompt = "<image>" + '\n' + prompt
|
223 |
+
prompt = f"<|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n"
|
224 |
+
image = Image.open(image_path).convert('RGB')
|
225 |
+
navit980_images = self.image_processor([[image]], return_tensors="pt", do_image_splitting=self.do_image_splitting)
|
226 |
+
batch_size_navit = navit980_images['pixel_values'].shape[0]
|
227 |
+
navit_pixel_values = navit980_images['navit_pixel_values'].cuda()
|
228 |
+
navit_patch_attention_mask = navit980_images["pixel_attention_mask"].cuda()
|
229 |
+
clip_visual_outputs = self.vision_tower(pixel_values=navit_pixel_values,patch_attention_mask=navit_patch_attention_mask,).last_hidden_state
|
230 |
+
super_image_hidden_states, image_2d_pos, valid_image_token_shape = \
|
231 |
+
recover_navit_subimages_with_pos_emb(
|
232 |
+
clip_visual_outputs, navit_patch_attention_mask, num_sub_images=4,
|
233 |
+
visual_embedding_group=1,
|
234 |
+
pos_hidden_size=4096,
|
235 |
+
thumbnail_only=True
|
236 |
+
)
|
237 |
+
clip_embeddings_native_patch, valid_image_token_shape = visiual_token_downsample(
|
238 |
+
self.downsampler,
|
239 |
+
super_image_hidden_states, valid_image_token_shape,
|
240 |
+
visual_embedding_group=1, image_2d_pos=None
|
241 |
+
)
|
242 |
+
clip_embeddings_qformer = self.connector(clip_visual_outputs, attention_mask=navit_patch_attention_mask.view(navit_pixel_values.size(0), -1))
|
243 |
+
hidden_size = clip_embeddings_qformer.shape[-1]
|
244 |
+
clip_embeddings_qformer = clip_embeddings_qformer.view(batch_size_navit, -1, hidden_size)
|
245 |
+
clip_embeddings_qformer = self.projector(clip_embeddings_qformer)
|
246 |
+
merged_visual_embeddings = \
|
247 |
+
merge_native_qformer(
|
248 |
+
clip_embeddings_native_patch,
|
249 |
+
valid_image_token_shape,
|
250 |
+
clip_embeddings_qformer,
|
251 |
+
visual_source_spliter=self.visual_source_spliter_emb,
|
252 |
+
num_sub_images=4
|
253 |
+
)
|
254 |
+
chunk_encode = []
|
255 |
+
for idx, chunk in enumerate(prompt.split(DEFAULT_IMAGE_TOKEN)):
|
256 |
+
if idx == 0:
|
257 |
+
cur_encode = self.tokenizer.encode(chunk)
|
258 |
+
else:
|
259 |
+
cur_encode = self.tokenizer.encode(chunk, add_special_tokens=False)
|
260 |
+
chunk_encode.append(cur_encode)
|
261 |
+
assert len(chunk_encode) == 2
|
262 |
+
ids = []
|
263 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
264 |
+
ids.extend(cur_chunk_encode)
|
265 |
+
if idx != len(chunk_encode) - 1:
|
266 |
+
ids.append(IMAGE_TOKEN_INDEX)
|
267 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
268 |
+
pixel_values = None
|
269 |
+
mm_inputs = self.prepare_inputs_labels_for_multimodal(
|
270 |
+
llm=self.language_model, input_ids=ids, pixel_values=pixel_values, clip_embeddings=merged_visual_embeddings)
|
271 |
+
generate_output = self.language_model.generate(
|
272 |
+
**mm_inputs,
|
273 |
+
generation_config=gen_config if gen_config is not None else self.gen_config,
|
274 |
+
streamer=None,
|
275 |
+
bos_token_id=self.tokenizer.bos_token_id,
|
276 |
+
stopping_criteria=self.stop_criteria
|
277 |
+
)
|
278 |
+
predict = self.tokenizer.decode(
|
279 |
+
generate_output[0], skip_special_tokens=True).strip()
|
280 |
+
return predict
|
281 |
+
def get_valid_visual_embedding(self, embedding, valid_token_shape):
|
282 |
+
if valid_token_shape is None:
|
283 |
+
return embedding
|
284 |
+
h, w = valid_token_shape
|
285 |
+
return embedding[:h, :w, :].reshape(h*w, -1)
|
286 |
+
# Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99 # noqa: E501
|
287 |
+
def prepare_inputs_labels_for_multimodal(
|
288 |
+
self,
|
289 |
+
llm: PreTrainedModel,
|
290 |
+
input_ids: torch.LongTensor = None,
|
291 |
+
position_ids: Optional[torch.LongTensor] = None,
|
292 |
+
attention_mask: Optional[torch.Tensor] = None,
|
293 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
294 |
+
labels: Optional[torch.LongTensor] = None,
|
295 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
296 |
+
clip_embeddings: Optional[torch.FloatTensor] = None,
|
297 |
+
hard_coded_max_len: Optional[int] = None,
|
298 |
+
**kwargs):
|
299 |
+
if pixel_values is None and clip_embeddings is None:
|
300 |
+
return {
|
301 |
+
'input_ids': input_ids,
|
302 |
+
'position_ids': position_ids,
|
303 |
+
'attention_mask': attention_mask,
|
304 |
+
'past_key_values': past_key_values,
|
305 |
+
'inputs_embeds': None,
|
306 |
+
'labels': labels
|
307 |
+
}
|
308 |
+
valid_image_token_shape = kwargs.get('valid_image_token_shape', None)
|
309 |
+
_labels = labels
|
310 |
+
_position_ids = position_ids
|
311 |
+
_attention_mask = attention_mask
|
312 |
+
if attention_mask is None:
|
313 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
314 |
+
else:
|
315 |
+
attention_mask = attention_mask.bool()
|
316 |
+
if position_ids is None:
|
317 |
+
position_ids = torch.arange(
|
318 |
+
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
319 |
+
if labels is None:
|
320 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
321 |
+
# remove the padding using attention_mask -- TODO: double check
|
322 |
+
input_ids = [
|
323 |
+
cur_input_ids[cur_attention_mask]
|
324 |
+
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
|
325 |
+
]
|
326 |
+
labels = [
|
327 |
+
cur_labels[cur_attention_mask]
|
328 |
+
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
|
329 |
+
]
|
330 |
+
new_inputs_embeds = []
|
331 |
+
new_labels = []
|
332 |
+
new_img_masks = []
|
333 |
+
cur_image_idx = 0
|
334 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
335 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
336 |
+
if num_images == 0:
|
337 |
+
cur_pixel_values = pixel_values[cur_image_idx] if pixel_values is not None else None
|
338 |
+
cur_clip_emb = self.get_valid_visual_embedding(clip_embeddings[cur_image_idx], valid_image_token_shape[cur_image_idx]) if clip_embeddings is not None else None
|
339 |
+
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
|
340 |
+
if cur_clip_emb is not None and cur_pixel_values is not None:
|
341 |
+
cur_inputs_embeds = torch.cat(
|
342 |
+
[cur_inputs_embeds_1, cur_pixel_values[0:0], cur_clip_emb[0:0]], dim=0)
|
343 |
+
elif cur_pixel_values is not None:
|
344 |
+
cur_inputs_embeds = torch.cat(
|
345 |
+
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
|
346 |
+
elif cur_clip_emb is not None:
|
347 |
+
cur_inputs_embeds = torch.cat(
|
348 |
+
[cur_inputs_embeds_1, cur_clip_emb[0:0]], dim=0)
|
349 |
+
else:
|
350 |
+
raise ValueError
|
351 |
+
new_inputs_embeds.append(cur_inputs_embeds)
|
352 |
+
new_labels.append(labels[batch_idx])
|
353 |
+
new_img_masks.append(torch.zeros(
|
354 |
+
cur_inputs_embeds.shape[0], device=cur_inputs_embeds.device).bool())
|
355 |
+
cur_image_idx += 1
|
356 |
+
continue
|
357 |
+
image_token_indices = [-1] + torch.where(
|
358 |
+
cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [
|
359 |
+
cur_input_ids.shape[0]
|
360 |
+
]
|
361 |
+
cur_input_ids_noim = []
|
362 |
+
cur_labels = labels[batch_idx]
|
363 |
+
cur_labels_noim = []
|
364 |
+
for i in range(len(image_token_indices) - 1):
|
365 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] +
|
366 |
+
1:image_token_indices[i +
|
367 |
+
1]])
|
368 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i] +
|
369 |
+
1:image_token_indices[i + 1]])
|
370 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
371 |
+
cur_inputs_embeds = llm.get_input_embeddings()(
|
372 |
+
torch.cat(cur_input_ids_noim))
|
373 |
+
cur_inputs_embeds_no_im = torch.split(
|
374 |
+
cur_inputs_embeds, split_sizes, dim=0)
|
375 |
+
cur_new_inputs_embeds = []
|
376 |
+
cur_new_labels = []
|
377 |
+
cur_img_masks = []
|
378 |
+
for i in range(num_images + 1):
|
379 |
+
cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
|
380 |
+
cur_new_labels.append(cur_labels_noim[i])
|
381 |
+
cur_img_masks.append(torch.zeros(
|
382 |
+
cur_inputs_embeds_no_im[i].shape[0], device=cur_inputs_embeds_no_im[i].device).bool())
|
383 |
+
if i < num_images:
|
384 |
+
cur_pixel_values = pixel_values[cur_image_idx] if pixel_values is not None else None
|
385 |
+
if(valid_image_token_shape is not None):
|
386 |
+
cur_clip_emb = \
|
387 |
+
self.get_valid_visual_embedding(clip_embeddings[cur_image_idx], valid_image_token_shape[cur_image_idx]) \
|
388 |
+
if clip_embeddings is not None else None
|
389 |
+
else:
|
390 |
+
cur_clip_emb = clip_embeddings[cur_image_idx] if clip_embeddings is not None else None
|
391 |
+
cur_image_idx += 1
|
392 |
+
# discrete token embeddings
|
393 |
+
if cur_pixel_values is not None:
|
394 |
+
cur_new_inputs_embeds.append(cur_pixel_values)
|
395 |
+
cur_img_masks.append(torch.ones(
|
396 |
+
cur_pixel_values.shape[0], device=cur_pixel_values.device).bool())
|
397 |
+
cur_new_labels.append(
|
398 |
+
torch.full((cur_pixel_values.shape[0], ),
|
399 |
+
IGNORE_INDEX,
|
400 |
+
device=cur_labels.device,
|
401 |
+
dtype=cur_labels.dtype))
|
402 |
+
# clip embeddings
|
403 |
+
if cur_clip_emb is not None:
|
404 |
+
cur_new_inputs_embeds.append(cur_clip_emb)
|
405 |
+
cur_img_masks.append(torch.zeros(
|
406 |
+
cur_clip_emb.shape[0], device=cur_clip_emb.device).bool())
|
407 |
+
cur_new_labels.append(
|
408 |
+
torch.full((cur_clip_emb.shape[0],),
|
409 |
+
IGNORE_INDEX,
|
410 |
+
device=cur_labels.device,
|
411 |
+
dtype=cur_labels.dtype))
|
412 |
+
cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
|
413 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
414 |
+
cur_img_masks = torch.cat(cur_img_masks)
|
415 |
+
new_inputs_embeds.append(cur_new_inputs_embeds)
|
416 |
+
new_labels.append(cur_new_labels)
|
417 |
+
new_img_masks.append(cur_img_masks)
|
418 |
+
# Combine them
|
419 |
+
max_len = max(x.shape[0] for x in new_inputs_embeds)
|
420 |
+
if hard_coded_max_len is not None:
|
421 |
+
max_len = min(max_len, hard_coded_max_len)
|
422 |
+
batch_size = len(new_inputs_embeds)
|
423 |
+
new_inputs_embeds_padded = []
|
424 |
+
new_labels_padded = torch.full((batch_size, max_len),
|
425 |
+
IGNORE_INDEX,
|
426 |
+
dtype=new_labels[0].dtype,
|
427 |
+
device=new_labels[0].device)
|
428 |
+
attention_mask = torch.zeros((batch_size, max_len),
|
429 |
+
dtype=attention_mask.dtype,
|
430 |
+
device=attention_mask.device)
|
431 |
+
position_ids = torch.zeros((batch_size, max_len),
|
432 |
+
dtype=position_ids.dtype,
|
433 |
+
device=position_ids.device)
|
434 |
+
new_img_masks_padded = torch.zeros((batch_size, max_len), device=new_img_masks[0].device).bool()
|
435 |
+
for i, (cur_new_embed,
|
436 |
+
cur_new_labels, cur_new_img_masks) in enumerate(zip(new_inputs_embeds, new_labels, new_img_masks)):
|
437 |
+
cur_new_embed = cur_new_embed[:max_len]
|
438 |
+
cur_new_labels = cur_new_labels[:max_len]
|
439 |
+
cur_new_img_masks = cur_new_img_masks[:max_len]
|
440 |
+
cur_len = cur_new_embed.shape[0]
|
441 |
+
new_inputs_embeds_padded.append(
|
442 |
+
torch.cat((cur_new_embed,
|
443 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]),
|
444 |
+
dtype=cur_new_embed.dtype,
|
445 |
+
device=cur_new_embed.device)),
|
446 |
+
dim=0))
|
447 |
+
if cur_len > 0:
|
448 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
449 |
+
attention_mask[i, :cur_len] = True
|
450 |
+
position_ids[i, :cur_len] = torch.arange(
|
451 |
+
0,
|
452 |
+
cur_len,
|
453 |
+
dtype=position_ids.dtype,
|
454 |
+
device=position_ids.device)
|
455 |
+
new_img_masks_padded[i, :cur_len] = cur_new_img_masks
|
456 |
+
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
|
457 |
+
if _labels is None:
|
458 |
+
new_labels = None
|
459 |
+
else:
|
460 |
+
new_labels = new_labels_padded
|
461 |
+
if _attention_mask is None:
|
462 |
+
attention_mask = None
|
463 |
+
else:
|
464 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
465 |
+
if _position_ids is None:
|
466 |
+
position_ids = None
|
467 |
+
prepared_data = {
|
468 |
+
'input_ids': None,
|
469 |
+
'position_ids': position_ids,
|
470 |
+
'attention_mask': attention_mask,
|
471 |
+
'past_key_values': past_key_values,
|
472 |
+
'inputs_embeds': new_inputs_embeds,
|
473 |
+
'labels': new_labels,
|
474 |
+
}
|
475 |
+
if pixel_values is not None:
|
476 |
+
prepared_data.update({'im_mask': new_img_masks_padded})
|
477 |
+
return prepared_data
|
478 |
+
AutoConfig.register("wemm_hf", WeMMConfig)
|
479 |
+
AutoModel.register(WeMMConfig, WemmForConditionalGeneration)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "</s>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenization_internlm2_fast.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization Fast class for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, Optional, Tuple
|
22 |
+
|
23 |
+
from tokenizers import processors, decoders, Tokenizer, normalizers
|
24 |
+
from tokenizers.models import BPE
|
25 |
+
|
26 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
from transformers.convert_slow_tokenizer import (
|
30 |
+
SLOW_TO_FAST_CONVERTERS,
|
31 |
+
SpmConverter,
|
32 |
+
SentencePieceExtractor,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
40 |
+
|
41 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
42 |
+
class InternLM2Converter(SpmConverter):
|
43 |
+
handle_byte_fallback = True
|
44 |
+
|
45 |
+
def vocab(self, proto):
|
46 |
+
vocab = [
|
47 |
+
("<unk>", 0.0),
|
48 |
+
("<s>", 0.0),
|
49 |
+
("</s>", 0.0),
|
50 |
+
]
|
51 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
52 |
+
return vocab
|
53 |
+
|
54 |
+
def unk_id(self, proto):
|
55 |
+
unk_id = 0
|
56 |
+
return unk_id
|
57 |
+
|
58 |
+
def decoder(self, replacement, add_prefix_space):
|
59 |
+
return decoders.Sequence(
|
60 |
+
[
|
61 |
+
decoders.Replace("▁", " "),
|
62 |
+
decoders.ByteFallback(),
|
63 |
+
decoders.Fuse(),
|
64 |
+
decoders.Strip(content=" ", left=1),
|
65 |
+
]
|
66 |
+
)
|
67 |
+
|
68 |
+
def tokenizer(self, proto):
|
69 |
+
model_type = proto.trainer_spec.model_type
|
70 |
+
vocab_scores = self.vocab(proto)
|
71 |
+
# special tokens
|
72 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
73 |
+
for i in range(len(vocab_scores)):
|
74 |
+
piece, score = vocab_scores[i]
|
75 |
+
if i in added_tokens:
|
76 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
77 |
+
if model_type == 1:
|
78 |
+
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
79 |
+
|
80 |
+
elif model_type == 2:
|
81 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
82 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
83 |
+
tokenizer = Tokenizer(
|
84 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
85 |
+
)
|
86 |
+
tokenizer.add_special_tokens(
|
87 |
+
[ added_token for index, added_token in added_tokens.items()]
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
raise Exception(
|
91 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
92 |
+
)
|
93 |
+
|
94 |
+
return tokenizer
|
95 |
+
|
96 |
+
def normalizer(self, proto):
|
97 |
+
normalizers_list = []
|
98 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
99 |
+
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
100 |
+
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
101 |
+
return normalizers.Sequence(normalizers_list)
|
102 |
+
|
103 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
104 |
+
return None
|
105 |
+
|
106 |
+
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
107 |
+
|
108 |
+
|
109 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
110 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
111 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
112 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
113 |
+
padding_side = "left"
|
114 |
+
model_input_names = ["input_ids", "attention_mask"]
|
115 |
+
_auto_class = "AutoTokenizer"
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_file,
|
120 |
+
unk_token="<unk>",
|
121 |
+
bos_token="<s>",
|
122 |
+
eos_token="</s>",
|
123 |
+
pad_token="</s>",
|
124 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
125 |
+
add_bos_token=True,
|
126 |
+
add_eos_token=False,
|
127 |
+
decode_with_prefix_space=False,
|
128 |
+
clean_up_tokenization_spaces=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
super().__init__(
|
132 |
+
vocab_file=vocab_file,
|
133 |
+
unk_token=unk_token,
|
134 |
+
bos_token=bos_token,
|
135 |
+
eos_token=eos_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
sp_model_kwargs=sp_model_kwargs,
|
138 |
+
add_bos_token=add_bos_token,
|
139 |
+
add_eos_token=add_eos_token,
|
140 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
141 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
142 |
+
**kwargs,
|
143 |
+
)
|
144 |
+
self._add_bos_token = add_bos_token
|
145 |
+
self._add_eos_token = add_eos_token
|
146 |
+
self.update_post_processor()
|
147 |
+
self.vocab_file = vocab_file
|
148 |
+
|
149 |
+
@property
|
150 |
+
def can_save_slow_tokenizer(self) -> bool:
|
151 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
152 |
+
|
153 |
+
def update_post_processor(self):
|
154 |
+
"""
|
155 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
156 |
+
"""
|
157 |
+
bos = self.bos_token
|
158 |
+
bos_token_id = self.bos_token_id
|
159 |
+
if bos is None and self.add_bos_token:
|
160 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
161 |
+
|
162 |
+
eos = self.eos_token
|
163 |
+
eos_token_id = self.eos_token_id
|
164 |
+
if eos is None and self.add_eos_token:
|
165 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
166 |
+
|
167 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
168 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
169 |
+
|
170 |
+
special_tokens = []
|
171 |
+
if self.add_bos_token:
|
172 |
+
special_tokens.append((bos, bos_token_id))
|
173 |
+
if self.add_eos_token:
|
174 |
+
special_tokens.append((eos, eos_token_id))
|
175 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
176 |
+
single=single, pair=pair, special_tokens=special_tokens
|
177 |
+
)
|
178 |
+
|
179 |
+
@property
|
180 |
+
def add_eos_token(self):
|
181 |
+
return self._add_eos_token
|
182 |
+
|
183 |
+
@property
|
184 |
+
def add_bos_token(self):
|
185 |
+
return self._add_bos_token
|
186 |
+
|
187 |
+
@add_eos_token.setter
|
188 |
+
def add_eos_token(self, value):
|
189 |
+
self._add_eos_token = value
|
190 |
+
self.update_post_processor()
|
191 |
+
|
192 |
+
@add_bos_token.setter
|
193 |
+
def add_bos_token(self, value):
|
194 |
+
self._add_bos_token = value
|
195 |
+
self.update_post_processor()
|
196 |
+
|
197 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
198 |
+
if not self.can_save_slow_tokenizer:
|
199 |
+
raise ValueError(
|
200 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
201 |
+
"tokenizer."
|
202 |
+
)
|
203 |
+
|
204 |
+
if not os.path.isdir(save_directory):
|
205 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
206 |
+
return
|
207 |
+
out_vocab_file = os.path.join(
|
208 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
209 |
+
)
|
210 |
+
|
211 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
212 |
+
copyfile(self.vocab_file, out_vocab_file)
|
213 |
+
|
214 |
+
return (out_vocab_file,)
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
5 |
+
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"bos_token": "<s>",
|
9 |
+
"clean_up_tokenization_spaces": false,
|
10 |
+
"eos_token": "</s>",
|
11 |
+
"model_max_length": 1000000000000000019884624838656,
|
12 |
+
"pad_token": "</s>",
|
13 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
14 |
+
"unk_token": "<unk>",
|
15 |
+
"added_tokens_decoder": {
|
16 |
+
"0": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false,
|
22 |
+
"special": true
|
23 |
+
},
|
24 |
+
"1": {
|
25 |
+
"content": "<s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false,
|
30 |
+
"special": true
|
31 |
+
},
|
32 |
+
"2": {
|
33 |
+
"content": "</s>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false,
|
38 |
+
"special": true
|
39 |
+
},
|
40 |
+
"92543": {
|
41 |
+
"content": "<|im_start|>",
|
42 |
+
"lstrip": false,
|
43 |
+
"normalized": false,
|
44 |
+
"rstrip": false,
|
45 |
+
"single_word": false,
|
46 |
+
"special": true
|
47 |
+
},
|
48 |
+
"92542": {
|
49 |
+
"content": "<|im_end|>",
|
50 |
+
"lstrip": false,
|
51 |
+
"normalized": false,
|
52 |
+
"rstrip": false,
|
53 |
+
"single_word": false,
|
54 |
+
"special": true
|
55 |
+
},
|
56 |
+
"92541": {
|
57 |
+
"content": "<|action_start|>",
|
58 |
+
"lstrip": false,
|
59 |
+
"normalized": false,
|
60 |
+
"rstrip": false,
|
61 |
+
"single_word": false,
|
62 |
+
"special": true
|
63 |
+
},
|
64 |
+
"92540": {
|
65 |
+
"content": "<|action_end|>",
|
66 |
+
"lstrip": false,
|
67 |
+
"normalized": false,
|
68 |
+
"rstrip": false,
|
69 |
+
"single_word": false,
|
70 |
+
"special": true
|
71 |
+
},
|
72 |
+
"92539": {
|
73 |
+
"content": "<|interpreter|>",
|
74 |
+
"lstrip": false,
|
75 |
+
"normalized": false,
|
76 |
+
"rstrip": false,
|
77 |
+
"single_word": false,
|
78 |
+
"special": true
|
79 |
+
},
|
80 |
+
"92538": {
|
81 |
+
"content": "<|plugin|>",
|
82 |
+
"lstrip": false,
|
83 |
+
"normalized": false,
|
84 |
+
"rstrip": false,
|
85 |
+
"single_word": false,
|
86 |
+
"special": true
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
90 |
+
}
|
vision_model.py
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
import math
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Dict, List, Optional, Tuple, Union
|
7 |
+
import json
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.cache_utils import Cache, DynamicCache
|
17 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
18 |
+
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
|
19 |
+
from transformers.utils import (
|
20 |
+
add_start_docstrings,
|
21 |
+
add_start_docstrings_to_model_forward,
|
22 |
+
is_flash_attn_2_available,
|
23 |
+
is_flash_attn_greater_or_equal_2_10,
|
24 |
+
logging,
|
25 |
+
replace_return_docstrings,
|
26 |
+
)
|
27 |
+
|
28 |
+
if is_flash_attn_2_available():
|
29 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
31 |
+
|
32 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
33 |
+
|
34 |
+
|
35 |
+
class Idefics2VisionConfig(PretrainedConfig):
|
36 |
+
r"""
|
37 |
+
This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
|
38 |
+
Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
39 |
+
configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
|
40 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
|
41 |
+
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).
|
42 |
+
|
43 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
44 |
+
documentation from [`PretrainedConfig`] for more information.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
48 |
+
Dimensionality of the encoder layers and the pooler layer.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
51 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
num_channels (`int`, *optional*, defaults to 3):
|
56 |
+
Number of channels in the input images.
|
57 |
+
image_size (`int`, *optional*, defaults to 224):
|
58 |
+
The size (resolution) of each image.
|
59 |
+
patch_size (`int`, *optional*, defaults to 32):
|
60 |
+
The size (resolution) of each patch.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
62 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
63 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
64 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the layer normalization layers.
|
66 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
67 |
+
The dropout ratio for the attention probabilities.
|
68 |
+
intializer_range (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation for initializing all weight matrices in the model.
|
70 |
+
|
71 |
+
Example:
|
72 |
+
|
73 |
+
```python
|
74 |
+
>>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
75 |
+
>>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig
|
76 |
+
|
77 |
+
>>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
|
78 |
+
>>> configuration = Idefics2VisionConfig()
|
79 |
+
|
80 |
+
>>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
|
81 |
+
>>> model = Idefics2VisionTransformer(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
_auto_class = 'AutoConfig'
|
87 |
+
model_type = "Idefics2VisionConfig"
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
hidden_size=768,
|
92 |
+
intermediate_size=3072,
|
93 |
+
num_hidden_layers=12,
|
94 |
+
num_attention_heads=12,
|
95 |
+
num_channels=3,
|
96 |
+
image_size=224,
|
97 |
+
patch_size=32,
|
98 |
+
hidden_act="gelu_pytorch_tanh",
|
99 |
+
layer_norm_eps=1e-6,
|
100 |
+
attention_dropout=0.0,
|
101 |
+
initializer_range=0.02,
|
102 |
+
model_type='Idefics2VisionConfig',
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
super().__init__(**kwargs)
|
106 |
+
|
107 |
+
self.hidden_size = hidden_size
|
108 |
+
self.intermediate_size = intermediate_size
|
109 |
+
self.num_hidden_layers = num_hidden_layers
|
110 |
+
self.num_attention_heads = num_attention_heads
|
111 |
+
self.num_channels = num_channels
|
112 |
+
self.patch_size = patch_size
|
113 |
+
self.image_size = image_size
|
114 |
+
self.attention_dropout = attention_dropout
|
115 |
+
self.layer_norm_eps = layer_norm_eps
|
116 |
+
self.hidden_act = hidden_act
|
117 |
+
self.initializer_range = initializer_range
|
118 |
+
"""
|
119 |
+
@classmethod
|
120 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig":
|
121 |
+
|
122 |
+
with open(pretrained_model_name_or_path, "r", encoding="utf-8") as f:
|
123 |
+
config_dict = json.load(f)
|
124 |
+
|
125 |
+
cls = Idefics2VisionConfig(
|
126 |
+
hidden_size=config_dict["hidden_size"],
|
127 |
+
image_size=config_dict["image_size"],
|
128 |
+
intermediate_size = config_dict["intermediate_size"],
|
129 |
+
model_type=config_dict["model_type"],
|
130 |
+
num_attention_heads = config_dict["num_attention_heads"],
|
131 |
+
num_hidden_layers = config_dict["num_hidden_layers"],
|
132 |
+
patch_size = config_dict["patch_size"]
|
133 |
+
)
|
134 |
+
|
135 |
+
return cls
|
136 |
+
"""
|
137 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
138 |
+
def _get_unpad_data(attention_mask):
|
139 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
140 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
141 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
142 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
143 |
+
return (
|
144 |
+
indices,
|
145 |
+
cu_seqlens,
|
146 |
+
max_seqlen_in_batch,
|
147 |
+
)
|
148 |
+
|
149 |
+
# Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics2Vision
|
150 |
+
class Idefics2VisionAttention(nn.Module):
|
151 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
152 |
+
|
153 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
154 |
+
def __init__(self, config):
|
155 |
+
super().__init__()
|
156 |
+
self.config = config
|
157 |
+
self.embed_dim = config.hidden_size
|
158 |
+
self.num_heads = config.num_attention_heads
|
159 |
+
self.head_dim = self.embed_dim // self.num_heads
|
160 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
161 |
+
raise ValueError(
|
162 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
163 |
+
f" {self.num_heads})."
|
164 |
+
)
|
165 |
+
self.scale = self.head_dim**-0.5
|
166 |
+
self.dropout = config.attention_dropout
|
167 |
+
|
168 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
169 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
170 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
171 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
172 |
+
|
173 |
+
# Ignore copy
|
174 |
+
self.is_causal = False
|
175 |
+
|
176 |
+
def forward(
|
177 |
+
self,
|
178 |
+
hidden_states: torch.Tensor,
|
179 |
+
attention_mask: Optional[torch.Tensor] = None,
|
180 |
+
output_attentions: Optional[bool] = False,
|
181 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
182 |
+
"""Input shape: Batch x Time x Channel"""
|
183 |
+
|
184 |
+
batch_size, q_len, _ = hidden_states.size()
|
185 |
+
|
186 |
+
query_states = self.q_proj(hidden_states)
|
187 |
+
key_states = self.k_proj(hidden_states)
|
188 |
+
value_states = self.v_proj(hidden_states)
|
189 |
+
|
190 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
191 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
192 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
193 |
+
|
194 |
+
k_v_seq_len = key_states.shape[-2]
|
195 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
196 |
+
|
197 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
198 |
+
raise ValueError(
|
199 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
200 |
+
f" {attn_weights.size()}"
|
201 |
+
)
|
202 |
+
|
203 |
+
if attention_mask is not None:
|
204 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
205 |
+
raise ValueError(
|
206 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
207 |
+
)
|
208 |
+
attn_weights = attn_weights + attention_mask
|
209 |
+
|
210 |
+
# upcast attention to fp32
|
211 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
212 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
213 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
214 |
+
|
215 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
216 |
+
raise ValueError(
|
217 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
218 |
+
f" {attn_output.size()}"
|
219 |
+
)
|
220 |
+
|
221 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
222 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
223 |
+
|
224 |
+
attn_output = self.out_proj(attn_output)
|
225 |
+
|
226 |
+
return attn_output, attn_weights
|
227 |
+
|
228 |
+
|
229 |
+
class Idefics2VisionFlashAttention2(Idefics2VisionAttention):
|
230 |
+
"""
|
231 |
+
Idefics2Vision flash attention module. This module inherits from `Idefics2VisionAttention` as the weights of the module stays
|
232 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
233 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
234 |
+
"""
|
235 |
+
|
236 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
237 |
+
def __init__(self, *args, **kwargs):
|
238 |
+
super().__init__(*args, **kwargs)
|
239 |
+
|
240 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
241 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
242 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
243 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
244 |
+
|
245 |
+
def forward(
|
246 |
+
self,
|
247 |
+
hidden_states: torch.Tensor,
|
248 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
249 |
+
position_ids: Optional[torch.LongTensor] = None,
|
250 |
+
past_key_value: Optional[Cache] = None,
|
251 |
+
output_attentions: bool = False,
|
252 |
+
use_cache: bool = False,
|
253 |
+
**kwargs,
|
254 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
255 |
+
|
256 |
+
|
257 |
+
output_attentions = False
|
258 |
+
|
259 |
+
bsz, q_len, _ = hidden_states.size()
|
260 |
+
|
261 |
+
query_states = self.q_proj(hidden_states)
|
262 |
+
key_states = self.k_proj(hidden_states)
|
263 |
+
value_states = self.v_proj(hidden_states)
|
264 |
+
|
265 |
+
# Flash attention requires the input to have the shape
|
266 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
267 |
+
# therefore we just need to keep the original shape
|
268 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
269 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
270 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
271 |
+
|
272 |
+
kv_seq_len = key_states.shape[-2]
|
273 |
+
if past_key_value is not None:
|
274 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
275 |
+
|
276 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
277 |
+
# to be able to avoid many of these transpose/reshape/view.
|
278 |
+
query_states = query_states.transpose(1, 2)
|
279 |
+
key_states = key_states.transpose(1, 2)
|
280 |
+
value_states = value_states.transpose(1, 2)
|
281 |
+
|
282 |
+
dropout_rate = self.dropout if self.training else 0.0
|
283 |
+
|
284 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
285 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
286 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
287 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
288 |
+
# in fp32. (Idefics2VisionRMSNorm handles it correctly)
|
289 |
+
|
290 |
+
input_dtype = query_states.dtype
|
291 |
+
if input_dtype == torch.float32:
|
292 |
+
if torch.is_autocast_enabled():
|
293 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
294 |
+
# Handle the case where the model is quantized
|
295 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
296 |
+
target_dtype = self.config._pre_quantization_dtype
|
297 |
+
else:
|
298 |
+
target_dtype = self.q_proj.weight.dtype
|
299 |
+
|
300 |
+
logger.warning_once(
|
301 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
302 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
303 |
+
f" {target_dtype}."
|
304 |
+
)
|
305 |
+
|
306 |
+
query_states = query_states.to(target_dtype)
|
307 |
+
key_states = key_states.to(target_dtype)
|
308 |
+
value_states = value_states.to(target_dtype)
|
309 |
+
|
310 |
+
attn_output = self._flash_attention_forward(
|
311 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
312 |
+
)
|
313 |
+
|
314 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
315 |
+
attn_output = self.out_proj(attn_output)
|
316 |
+
|
317 |
+
if not output_attentions:
|
318 |
+
attn_weights = None
|
319 |
+
|
320 |
+
return attn_output, attn_weights
|
321 |
+
|
322 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
323 |
+
def _flash_attention_forward(
|
324 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
325 |
+
):
|
326 |
+
"""
|
327 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
328 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
query_states (`torch.Tensor`):
|
332 |
+
Input query states to be passed to Flash Attention API
|
333 |
+
key_states (`torch.Tensor`):
|
334 |
+
Input key states to be passed to Flash Attention API
|
335 |
+
value_states (`torch.Tensor`):
|
336 |
+
Input value states to be passed to Flash Attention API
|
337 |
+
attention_mask (`torch.Tensor`):
|
338 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
339 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
340 |
+
dropout (`float`):
|
341 |
+
Attention dropout
|
342 |
+
softmax_scale (`float`, *optional*):
|
343 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
344 |
+
"""
|
345 |
+
if not self._flash_attn_uses_top_left_mask:
|
346 |
+
causal = self.is_causal
|
347 |
+
else:
|
348 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
349 |
+
causal = self.is_causal and query_length != 1
|
350 |
+
|
351 |
+
# Contains at least one padding token in the sequence
|
352 |
+
if attention_mask is not None:
|
353 |
+
batch_size = query_states.shape[0]
|
354 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
355 |
+
query_states, key_states, value_states, attention_mask, query_length
|
356 |
+
)
|
357 |
+
|
358 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
359 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
360 |
+
|
361 |
+
attn_output_unpad = flash_attn_varlen_func(
|
362 |
+
query_states,
|
363 |
+
key_states,
|
364 |
+
value_states,
|
365 |
+
cu_seqlens_q=cu_seqlens_q,
|
366 |
+
cu_seqlens_k=cu_seqlens_k,
|
367 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
368 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
369 |
+
dropout_p=dropout,
|
370 |
+
softmax_scale=softmax_scale,
|
371 |
+
causal=causal,
|
372 |
+
)
|
373 |
+
|
374 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
375 |
+
else:
|
376 |
+
attn_output = flash_attn_func(
|
377 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
378 |
+
)
|
379 |
+
|
380 |
+
return attn_output
|
381 |
+
|
382 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
383 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
384 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
385 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
386 |
+
|
387 |
+
key_layer = index_first_axis(
|
388 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
389 |
+
)
|
390 |
+
value_layer = index_first_axis(
|
391 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
392 |
+
)
|
393 |
+
if query_length == kv_seq_len:
|
394 |
+
query_layer = index_first_axis(
|
395 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
396 |
+
)
|
397 |
+
cu_seqlens_q = cu_seqlens_k
|
398 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
399 |
+
indices_q = indices_k
|
400 |
+
elif query_length == 1:
|
401 |
+
max_seqlen_in_batch_q = 1
|
402 |
+
cu_seqlens_q = torch.arange(
|
403 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
404 |
+
) # There is a memcpy here, that is very bad.
|
405 |
+
indices_q = cu_seqlens_q[:-1]
|
406 |
+
query_layer = query_layer.squeeze(1)
|
407 |
+
else:
|
408 |
+
# The -q_len: slice assumes left padding.
|
409 |
+
attention_mask = attention_mask[:, -query_length:]
|
410 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
411 |
+
|
412 |
+
return (
|
413 |
+
query_layer,
|
414 |
+
key_layer,
|
415 |
+
value_layer,
|
416 |
+
indices_q,
|
417 |
+
(cu_seqlens_q, cu_seqlens_k),
|
418 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
419 |
+
)
|
420 |
+
|
421 |
+
IDEFICS_VISION_ATTENTION_CLASSES = {
|
422 |
+
"eager": Idefics2VisionAttention,
|
423 |
+
"flash_attention_2": Idefics2VisionFlashAttention2,
|
424 |
+
}
|
425 |
+
|
426 |
+
# Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics2Vision
|
427 |
+
class Idefics2VisionMLP(nn.Module):
|
428 |
+
def __init__(self, config):
|
429 |
+
super().__init__()
|
430 |
+
self.config = config
|
431 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
432 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
433 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
434 |
+
|
435 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
436 |
+
hidden_states = self.fc1(hidden_states)
|
437 |
+
hidden_states = self.activation_fn(hidden_states)
|
438 |
+
hidden_states = self.fc2(hidden_states)
|
439 |
+
return hidden_states
|
440 |
+
|
441 |
+
class Idefics2EncoderLayer(nn.Module):
|
442 |
+
def __init__(self, config: Idefics2VisionConfig):
|
443 |
+
super().__init__()
|
444 |
+
self.embed_dim = config.hidden_size
|
445 |
+
self.self_attn = IDEFICS_VISION_ATTENTION_CLASSES[config._attn_implementation](config)
|
446 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
447 |
+
self.mlp = Idefics2VisionMLP(config)
|
448 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
449 |
+
|
450 |
+
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward
|
451 |
+
def forward(
|
452 |
+
self,
|
453 |
+
hidden_states: torch.Tensor,
|
454 |
+
attention_mask: torch.Tensor,
|
455 |
+
output_attentions: Optional[bool] = False,
|
456 |
+
) -> Tuple[torch.FloatTensor]:
|
457 |
+
"""
|
458 |
+
Args:
|
459 |
+
hidden_states (`torch.FloatTensor`):
|
460 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
461 |
+
attention_mask (`torch.FloatTensor`):
|
462 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
463 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
464 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
465 |
+
returned tensors for more detail.
|
466 |
+
"""
|
467 |
+
residual = hidden_states
|
468 |
+
|
469 |
+
hidden_states = self.layer_norm1(hidden_states)
|
470 |
+
hidden_states, attn_weights = self.self_attn(
|
471 |
+
hidden_states=hidden_states,
|
472 |
+
attention_mask=attention_mask,
|
473 |
+
output_attentions=output_attentions,
|
474 |
+
)
|
475 |
+
hidden_states = residual + hidden_states
|
476 |
+
|
477 |
+
residual = hidden_states
|
478 |
+
hidden_states = self.layer_norm2(hidden_states)
|
479 |
+
hidden_states = self.mlp(hidden_states)
|
480 |
+
hidden_states = residual + hidden_states
|
481 |
+
|
482 |
+
outputs = (hidden_states,)
|
483 |
+
|
484 |
+
if output_attentions:
|
485 |
+
outputs += (attn_weights,)
|
486 |
+
|
487 |
+
return outputs
|
488 |
+
|
489 |
+
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics2
|
490 |
+
class Idefics2Encoder(nn.Module):
|
491 |
+
"""
|
492 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
493 |
+
[`Idefics2EncoderLayer`].
|
494 |
+
|
495 |
+
Args:
|
496 |
+
config: Idefics2VisionConfig
|
497 |
+
"""
|
498 |
+
|
499 |
+
def __init__(self, config: Idefics2VisionConfig):
|
500 |
+
super().__init__()
|
501 |
+
self.config = config
|
502 |
+
self.layers = nn.ModuleList([Idefics2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
503 |
+
self.gradient_checkpointing = False
|
504 |
+
|
505 |
+
# Ignore copy
|
506 |
+
def forward(
|
507 |
+
self,
|
508 |
+
inputs_embeds,
|
509 |
+
attention_mask: Optional[torch.Tensor] = None,
|
510 |
+
output_attentions: Optional[bool] = None,
|
511 |
+
output_hidden_states: Optional[bool] = None,
|
512 |
+
return_dict: Optional[bool] = None,
|
513 |
+
) -> Union[Tuple, BaseModelOutput]:
|
514 |
+
r"""
|
515 |
+
Args:
|
516 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
517 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
518 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
519 |
+
than the model's internal embedding lookup matrix.
|
520 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
521 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
522 |
+
|
523 |
+
- 1 for tokens that are **not masked**,
|
524 |
+
- 0 for tokens that are **masked**.
|
525 |
+
|
526 |
+
[What are attention masks?](../glossary#attention-mask)
|
527 |
+
output_attentions (`bool`, *optional*):
|
528 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
529 |
+
returned tensors for more detail.
|
530 |
+
output_hidden_states (`bool`, *optional*):
|
531 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
532 |
+
for more detail.
|
533 |
+
return_dict (`bool`, *optional*):
|
534 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
535 |
+
"""
|
536 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
537 |
+
output_hidden_states = (
|
538 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
539 |
+
)
|
540 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
541 |
+
|
542 |
+
encoder_states = () if output_hidden_states else None
|
543 |
+
all_attentions = () if output_attentions else None
|
544 |
+
|
545 |
+
hidden_states = inputs_embeds
|
546 |
+
for encoder_layer in self.layers:
|
547 |
+
if output_hidden_states:
|
548 |
+
encoder_states = encoder_states + (hidden_states,)
|
549 |
+
if self.gradient_checkpointing and self.training:
|
550 |
+
layer_outputs = self._gradient_checkpointing_func(
|
551 |
+
encoder_layer.__call__,
|
552 |
+
hidden_states,
|
553 |
+
attention_mask,
|
554 |
+
output_attentions,
|
555 |
+
)
|
556 |
+
else:
|
557 |
+
layer_outputs = encoder_layer(
|
558 |
+
hidden_states,
|
559 |
+
attention_mask,
|
560 |
+
output_attentions=output_attentions,
|
561 |
+
)
|
562 |
+
|
563 |
+
hidden_states = layer_outputs[0]
|
564 |
+
|
565 |
+
if output_attentions:
|
566 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
567 |
+
|
568 |
+
if output_hidden_states:
|
569 |
+
encoder_states = encoder_states + (hidden_states,)
|
570 |
+
|
571 |
+
if not return_dict:
|
572 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
573 |
+
return BaseModelOutput(
|
574 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
575 |
+
)
|
576 |
+
|
577 |
+
class Idefics2VisionEmbeddings(nn.Module):
|
578 |
+
"""
|
579 |
+
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
|
580 |
+
resolution.
|
581 |
+
|
582 |
+
The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304)
|
583 |
+
which allows treating images in their native aspect ratio and without the need to resize them to the same
|
584 |
+
fixed size. In particular, we start from the original pre-trained SigLIP model
|
585 |
+
(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
|
586 |
+
"""
|
587 |
+
|
588 |
+
def __init__(self, config: Idefics2VisionConfig):
|
589 |
+
super().__init__()
|
590 |
+
self.embed_dim = config.hidden_size
|
591 |
+
self.image_size = config.image_size
|
592 |
+
self.patch_size = config.patch_size
|
593 |
+
|
594 |
+
self.patch_embedding = nn.Conv2d(
|
595 |
+
in_channels=config.num_channels,
|
596 |
+
out_channels=self.embed_dim,
|
597 |
+
kernel_size=self.patch_size,
|
598 |
+
stride=self.patch_size,
|
599 |
+
padding="valid",
|
600 |
+
)
|
601 |
+
|
602 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
603 |
+
self.num_patches = self.num_patches_per_side**2
|
604 |
+
self.num_positions = self.num_patches
|
605 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
606 |
+
|
607 |
+
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
|
608 |
+
batch_size, _, max_im_h, max_im_w = pixel_values.shape
|
609 |
+
|
610 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
611 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
612 |
+
|
613 |
+
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
|
614 |
+
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
|
615 |
+
position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)
|
616 |
+
|
617 |
+
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
618 |
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
619 |
+
nb_patches_w = p_attn_mask[0].sum()
|
620 |
+
|
621 |
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
622 |
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
623 |
+
|
624 |
+
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
625 |
+
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
626 |
+
|
627 |
+
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
|
628 |
+
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
629 |
+
|
630 |
+
position_ids = position_ids.to(self.position_embedding.weight.device)
|
631 |
+
embeddings = embeddings + self.position_embedding(position_ids)
|
632 |
+
return embeddings
|
633 |
+
|
634 |
+
|
635 |
+
class Idefics2VisionTransformer(PreTrainedModel):
|
636 |
+
_auto_class = 'AutoModel'
|
637 |
+
config_class = Idefics2VisionConfig
|
638 |
+
supports_gradient_checkpointing = True
|
639 |
+
|
640 |
+
def __init__(self, config: Idefics2VisionConfig):
|
641 |
+
super().__init__(config)
|
642 |
+
embed_dim = config.hidden_size
|
643 |
+
|
644 |
+
config._attn_implementation = "flash_attention_2"
|
645 |
+
self._use_flash_attention_2 = True
|
646 |
+
self.config = config
|
647 |
+
self.embeddings = Idefics2VisionEmbeddings(config)
|
648 |
+
self.encoder = Idefics2Encoder(config)
|
649 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
650 |
+
|
651 |
+
|
652 |
+
def get_input_embeddings(self):
|
653 |
+
return self.embeddings
|
654 |
+
|
655 |
+
def set_input_embeddings(self, value):
|
656 |
+
self.embeddings = value
|
657 |
+
|
658 |
+
def forward(
|
659 |
+
self,
|
660 |
+
pixel_values,
|
661 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
662 |
+
output_attentions: Optional[bool] = None,
|
663 |
+
output_hidden_states: Optional[bool] = None,
|
664 |
+
return_dict: Optional[bool] = None,
|
665 |
+
) -> Union[Tuple, BaseModelOutput]:
|
666 |
+
|
667 |
+
pixel_values = pixel_values.to(torch.bfloat16)
|
668 |
+
|
669 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
670 |
+
output_hidden_states = (
|
671 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
672 |
+
)
|
673 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
674 |
+
|
675 |
+
batch_size = pixel_values.size(0)
|
676 |
+
if patch_attention_mask is None:
|
677 |
+
patch_size = self.config.patch_size
|
678 |
+
patch_attention_mask = torch.ones(
|
679 |
+
(
|
680 |
+
batch_size,
|
681 |
+
pixel_values.size(2) // patch_size,
|
682 |
+
pixel_values.size(3) // patch_size,
|
683 |
+
)
|
684 |
+
)
|
685 |
+
patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)
|
686 |
+
|
687 |
+
|
688 |
+
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
689 |
+
|
690 |
+
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
|
691 |
+
# The call to `_upad_input` in `_flash_attention_forward` is expensive
|
692 |
+
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
|
693 |
+
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
|
694 |
+
if not torch.any(~patch_attention_mask):
|
695 |
+
patch_attention_mask = None
|
696 |
+
elif not self._use_flash_attention_2:
|
697 |
+
patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
|
698 |
+
|
699 |
+
encoder_outputs = self.encoder(
|
700 |
+
inputs_embeds=hidden_states,
|
701 |
+
attention_mask=patch_attention_mask,
|
702 |
+
output_attentions=output_attentions,
|
703 |
+
output_hidden_states=output_hidden_states,
|
704 |
+
return_dict=return_dict,
|
705 |
+
)
|
706 |
+
|
707 |
+
last_hidden_state = encoder_outputs[0]
|
708 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
709 |
+
|
710 |
+
if not return_dict:
|
711 |
+
return (last_hidden_state,) + encoder_outputs[1:]
|
712 |
+
|
713 |
+
return BaseModelOutput(
|
714 |
+
last_hidden_state=last_hidden_state,
|
715 |
+
hidden_states=encoder_outputs.hidden_states,
|
716 |
+
attentions=encoder_outputs.attentions,
|
717 |
+
)
|
718 |
+
"""
|
719 |
+
@classmethod
|
720 |
+
def from_pretrained(self, config_path="/mnt/csp/mmvision/home/arrayyang/idefics2-8b/idefics2_vision_model"):
|
721 |
+
config = Idefics2VisionConfig.from_pretrained(f'{config_path}/config.json')
|
722 |
+
cls = Idefics2VisionTransformer(config=config)
|
723 |
+
|
724 |
+
state_dict = torch.load(f'{config_path}/vision_model.pth', map_location='cpu')
|
725 |
+
ret = cls.load_state_dict(state_dict, strict=False)
|
726 |
+
print("Loading idefics2 Vision Model: {}".format(config_path))
|
727 |
+
return cls
|
728 |
+
"""
|