File size: 3,506 Bytes
e94878a 56201f9 e94878a 56201f9 e94878a 56201f9 e94878a 56201f9 e94878a 56201f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
language: ti
widget:
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር"
datasets:
- TLMD
- NTC
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: tiroberta-base-pos
results:
- task:
name: Token Classification
type: token-classification
metrics:
- name: F1
type: f1
value: 0.9562
- name: Precision
type: precision
value: 0.9562
- name: Recall
type: recall
value: 0.9562
- name: Accuracy
type: accuracy
value: 0.9562
---
# Tigrinya POS tagging with TiRoBERTa
This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/tiroberta) on the NTC-v1 dataset (Tedla et al. 2016).
## Training
### Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Results
The model achieves the following results on the test set:
- Loss: 0.3194
- Adj Precision: 0.9219
- Adj Recall: 0.9335
- Adj F1: 0.9277
- Adj Number: 1670
- Adv Precision: 0.8297
- Adv Recall: 0.8554
- Adv F1: 0.8423
- Adv Number: 484
- Con Precision: 0.9844
- Con Recall: 0.9763
- Con F1: 0.9804
- Con Number: 972
- Fw Precision: 0.7895
- Fw Recall: 0.5357
- Fw F1: 0.6383
- Fw Number: 28
- Int Precision: 0.6552
- Int Recall: 0.7308
- Int F1: 0.6909
- Int Number: 26
- N Precision: 0.9650
- N Recall: 0.9662
- N F1: 0.9656
- N Number: 3992
- Num Precision: 0.9747
- Num Recall: 0.9665
- Num F1: 0.9706
- Num Number: 239
- N Prp Precision: 0.9308
- N Prp Recall: 0.9447
- N Prp F1: 0.9377
- N Prp Number: 470
- N V Precision: 0.9854
- N V Recall: 0.9736
- N V F1: 0.9794
- N V Number: 416
- Pre Precision: 0.9722
- Pre Recall: 0.9625
- Pre F1: 0.9673
- Pre Number: 907
- Pro Precision: 0.9448
- Pro Recall: 0.9236
- Pro F1: 0.9341
- Pro Number: 445
- Pun Precision: 1.0
- Pun Recall: 0.9994
- Pun F1: 0.9997
- Pun Number: 1607
- Unc Precision: 1.0
- Unc Recall: 0.875
- Unc F1: 0.9333
- Unc Number: 16
- V Precision: 0.8780
- V Recall: 0.9231
- V F1: 0.9
- V Number: 78
- V Aux Precision: 0.9685
- V Aux Recall: 0.9878
- V Aux F1: 0.9780
- V Aux Number: 654
- V Ger Precision: 0.9388
- V Ger Recall: 0.9571
- V Ger F1: 0.9479
- V Ger Number: 513
- V Imf Precision: 0.9634
- V Imf Recall: 0.9497
- V Imf F1: 0.9565
- V Imf Number: 914
- V Imv Precision: 0.8793
- V Imv Recall: 0.7286
- V Imv F1: 0.7969
- V Imv Number: 70
- V Prf Precision: 0.8960
- V Prf Recall: 0.9082
- V Prf F1: 0.9020
- V Prf Number: 294
- V Rel Precision: 0.9678
- V Rel Recall: 0.9538
- V Rel F1: 0.9607
- V Rel Number: 757
- Overall Precision: 0.9562
- Overall Recall: 0.9562
- Overall F1: 0.9562
- Overall Accuracy: 0.9562
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
## Citation
If you use this model in your product or research, please cite as follows:
```
@article{Fitsum2021TiPLMs,
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
title={Monolingual Pre-trained Language Models for Tigrinya},
year=2021,
publisher={WiNLP 2021/EMNLP 2021}
}
```
## References
```
Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016.
Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus.
International Journal Of Computer Applications 146 pp. 33-41 (2016).
```
|