File size: 1,280 Bytes
31e005b 5e57fe2 31e005b a0b6402 4570e6c a0b6402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
language: de
license: cc-by-sa-4.0
datasets:
- germeval_14
tags:
- German
- de
- NER
---
# BERT-DE-NER
## What is it?
This is a German BERT model fine-tuned for named entity recognition.
## Base model & training
This model is based on [bert-base-german-dbmdz-cased](https://huggingface.co/bert-base-german-dbmdz-cased) and has been fine-tuned
for NER on the training data from [GermEval2014](https://sites.google.com/site/germeval2014ner).
## Model results
The results on the test data from GermEval2014 are (entities only):
| Precision | Recall | F1-Score |
|----------:|-------:|---------:|
| 0.817 | 0.842 | 0.829 |
## How to use
```Python
>>> from transformers import pipeline
>>> classifier = pipeline('ner', model="fhswf/bert_de_ner")
>>> classifier('Von der Organisation „medico international“ hieß es, die EU entziehe sich seit vielen Jahren der Verantwortung für die Menschen an ihren Außengrenzen.')
[{'word': 'med', 'score': 0.9996621608734131, 'entity': 'B-ORG', 'index': 6},
{'word': '##ico', 'score': 0.9995362162590027, 'entity': 'I-ORG', 'index': 7},
{'word': 'international',
'score': 0.9996932744979858,
'entity': 'I-ORG',
'index': 8},
{'word': 'eu', 'score': 0.9997008442878723, 'entity': 'B-ORG', 'index': 14}]
```
|