Fine-tuned standard easyocr model using the following dataset: https://huggingface.co/datasets/fimu-docproc-research/born_digital with addition of another 20 000 examples of generated IBANs/account numbers. train_log: https://huggingface.co/fimu-docproc-research/standard_0.1.1_EasyOcrEngine/blob/main/log_train.txt options: https://huggingface.co/fimu-docproc-research/standard_0.1.1_EasyOcrEngine/blob/main/opt.txt ```python >>> import easyocr >>> import torch >>> from huggingface_hub import hf_hub_download >>> # Initialize default easyocr model >>> reader = easyocr.Reader(['en', 'cs', 'sk', 'pl']) >>> # Download weights of recognition module. >>> model_dir = hf_hub_download(repo_id="fimu-docproc-research/standard_0.1.1_EasyOcrEngine", filename="weights.pth") >>> # Load the weights >>> state_dict = torch.load(model_dir, map_location="cuda") >>> # Load the state dictionary into the model >>> reader.recognizer.load_state_dict(state_dict) >>> # Typical usage of easyocr model to get predictions >>> res = reader.readtext(input_img) ``` ### Example usage (without GPU): ```python >>> from collections import OrderedDict >>> import easyocr >>> import torch >>> from huggingface_hub import hf_hub_download >>> # Initialize default easyocr model >>> reader = easyocr.Reader(['en', 'cs', 'sk', 'pl'], quantize=False, gpu=False) >>> # Download weights of recognition module. >>> model_dir = hf_hub_download(repo_id="fimu-docproc-research/standard_0.1.1_EasyOcrEngine", filename="weights.pth") >>> # Load the weights >>> state_dict = torch.load(model_dir, map_location="cpu") >>> # There is need to remove first 7 characters due to easyocr library >>> new_state_dict = OrderedDict() >>> for key, value in state_dict.items(): >>> new_key = key[7:] >>> new_state_dict[new_key] = value >>> # Load the state dictionary into the model >>> reader.recognizer.load_state_dict(new_state_dict) >>> # Typical usage of easyocr model to get predictions >>> res = reader.readtext(input_img) ```