florian-hoenicke
commited on
Commit
•
ec5f4ea
1
Parent(s):
3fe1933
feat: push custom model
Browse files- 1_Pooling/config.json +10 -0
- README.md +41 -0
- config.json +36 -0
- config_sentence_transformers.json +9 -0
- configuration_bert.py +168 -0
- model.safetensors +3 -0
- modeling_bert.py +0 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- fine-tuned/jina-embeddings-v2-base-en-19052024-oiu8-webapp
|
5 |
+
- allenai/c4
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: feature-extraction
|
9 |
+
tags:
|
10 |
+
- sentence-transformers
|
11 |
+
- feature-extraction
|
12 |
+
- sentence-similarity
|
13 |
+
- mteb
|
14 |
+
- E-commerce
|
15 |
+
- Advertising
|
16 |
+
- Online merchants
|
17 |
+
- Multichannel campaigns
|
18 |
+
- Community
|
19 |
+
---
|
20 |
+
This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case:
|
21 |
+
|
22 |
+
E-commerce advertising platform
|
23 |
+
|
24 |
+
## How to Use
|
25 |
+
This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
from sentence_transformers.util import cos_sim
|
30 |
+
|
31 |
+
model = SentenceTransformer(
|
32 |
+
'fine-tuned/jina-embeddings-v2-base-en-19052024-oiu8-webapp',
|
33 |
+
trust_remote_code=True
|
34 |
+
)
|
35 |
+
|
36 |
+
embeddings = model.encode([
|
37 |
+
'first text to embed',
|
38 |
+
'second text to embed'
|
39 |
+
])
|
40 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
41 |
+
```
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mytmp/finetuned_model",
|
3 |
+
"architectures": [
|
4 |
+
"JinaBertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"attn_implementation": null,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bert.JinaBertConfig",
|
10 |
+
"AutoModel": "modeling_bert.JinaBertModel",
|
11 |
+
"AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
|
12 |
+
"AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
|
13 |
+
},
|
14 |
+
"classifier_dropout": null,
|
15 |
+
"emb_pooler": "mean",
|
16 |
+
"feed_forward_type": "geglu",
|
17 |
+
"gradient_checkpointing": false,
|
18 |
+
"hidden_act": "gelu",
|
19 |
+
"hidden_dropout_prob": 0.1,
|
20 |
+
"hidden_size": 768,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 3072,
|
23 |
+
"layer_norm_eps": 1e-12,
|
24 |
+
"max_position_embeddings": 8192,
|
25 |
+
"model_max_length": 8192,
|
26 |
+
"model_type": "bert",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"position_embedding_type": "alibi",
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.40.2",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 30528
|
36 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.7.0",
|
4 |
+
"transformers": "4.40.2",
|
5 |
+
"pytorch": "1.11.0+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
configuration_bert.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
# Copyright (c) 2023 Jina AI GmbH. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" BERT model configuration"""
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import Mapping
|
20 |
+
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.onnx import OnnxConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class JinaBertConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
|
32 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
34 |
+
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
51 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
52 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
55 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
57 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout ratio for the attention probabilities.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
63 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
67 |
+
The epsilon used by the layer normalization layers.
|
68 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
69 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
70 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
71 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
72 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
73 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
74 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
78 |
+
relevant if `config.is_decoder=True`.
|
79 |
+
classifier_dropout (`float`, *optional*):
|
80 |
+
The dropout ratio for the classification head.
|
81 |
+
feed_forward_type (`str`, *optional*, defaults to `"original"`):
|
82 |
+
The type of feed forward layer to use in the bert layers.
|
83 |
+
Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
|
84 |
+
emb_pooler (`str`, *optional*, defaults to `None`):
|
85 |
+
The function to use for pooling the last layer embeddings to get the sentence embeddings.
|
86 |
+
Should be one of `None`, `"mean"`.
|
87 |
+
attn_implementation (`str`, *optional*, defaults to `"torch"`):
|
88 |
+
The implementation of the self-attention layer. Can be one of:
|
89 |
+
- `None` for the original implementation,
|
90 |
+
- `torch` for the PyTorch SDPA implementation,
|
91 |
+
|
92 |
+
Examples:
|
93 |
+
|
94 |
+
```python
|
95 |
+
>>> from transformers import JinaBertConfig, JinaBertModel
|
96 |
+
|
97 |
+
>>> # Initializing a JinaBert configuration
|
98 |
+
>>> configuration = JinaBertConfig()
|
99 |
+
|
100 |
+
>>> # Initializing a model (with random weights) from the configuration
|
101 |
+
>>> model = JinaBertModel(configuration)
|
102 |
+
|
103 |
+
>>> # Accessing the model configuration
|
104 |
+
>>> configuration = model.config
|
105 |
+
|
106 |
+
>>> # Encode text inputs
|
107 |
+
>>> embeddings = model.encode(text_inputs)
|
108 |
+
```"""
|
109 |
+
model_type = "bert"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=30522,
|
114 |
+
hidden_size=768,
|
115 |
+
num_hidden_layers=12,
|
116 |
+
num_attention_heads=12,
|
117 |
+
intermediate_size=3072,
|
118 |
+
hidden_act="gelu",
|
119 |
+
hidden_dropout_prob=0.1,
|
120 |
+
attention_probs_dropout_prob=0.1,
|
121 |
+
max_position_embeddings=512,
|
122 |
+
type_vocab_size=2,
|
123 |
+
initializer_range=0.02,
|
124 |
+
layer_norm_eps=1e-12,
|
125 |
+
pad_token_id=0,
|
126 |
+
position_embedding_type="absolute",
|
127 |
+
use_cache=True,
|
128 |
+
classifier_dropout=None,
|
129 |
+
feed_forward_type="original",
|
130 |
+
emb_pooler=None,
|
131 |
+
attn_implementation='torch',
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
135 |
+
|
136 |
+
self.vocab_size = vocab_size
|
137 |
+
self.hidden_size = hidden_size
|
138 |
+
self.num_hidden_layers = num_hidden_layers
|
139 |
+
self.num_attention_heads = num_attention_heads
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.intermediate_size = intermediate_size
|
142 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
143 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
144 |
+
self.max_position_embeddings = max_position_embeddings
|
145 |
+
self.type_vocab_size = type_vocab_size
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.layer_norm_eps = layer_norm_eps
|
148 |
+
self.position_embedding_type = position_embedding_type
|
149 |
+
self.use_cache = use_cache
|
150 |
+
self.classifier_dropout = classifier_dropout
|
151 |
+
self.feed_forward_type = feed_forward_type
|
152 |
+
self.emb_pooler = emb_pooler
|
153 |
+
self.attn_implementation = attn_implementation
|
154 |
+
|
155 |
+
class JinaBertOnnxConfig(OnnxConfig):
|
156 |
+
@property
|
157 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
158 |
+
if self.task == "multiple-choice":
|
159 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
160 |
+
else:
|
161 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
162 |
+
return OrderedDict(
|
163 |
+
[
|
164 |
+
("input_ids", dynamic_axis),
|
165 |
+
("attention_mask", dynamic_axis),
|
166 |
+
("token_type_ids", dynamic_axis),
|
167 |
+
]
|
168 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31f56deb16ac4129896811d28bda7d06ae07dc52a5b3725f200327d75c0956db
|
3 |
+
size 549493968
|
modeling_bert.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 2147483648,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2ab05bf237c67d3df6b115fd8821460cffc2e26f30c4e6607a77c2ad26a6719
|
3 |
+
size 4719
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|