Safetensors
File size: 9,107 Bytes
c2ecfb5
 
 
 
 
 
 
c4a514f
 
 
 
 
 
 
 
c2ecfb5
 
 
c4a514f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a514f
 
 
 
 
 
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a514f
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a514f
c2ecfb5
 
 
c4a514f
c2ecfb5
c4a514f
c2ecfb5
 
 
 
 
 
 
 
 
c4a514f
c2ecfb5
 
 
 
 
 
 
 
 
c4a514f
c2ecfb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a514f
 
c2ecfb5
 
c4a514f
c2ecfb5
 
 
 
 
 
 
c4a514f
 
 
 
 
 
 
c2ecfb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from fnmatch import fnmatch
from typing import List, Optional, Union

import torch
from click import secho
from cublas_ops import CublasLinear

from quanto import (
    QModuleMixin,
    quantize_module,
    QLinear,
    QConv2d,
    QLayerNorm,
)
from quanto.tensor import Optimizer, qtype, qfloat8, qint4, qint8
from torch import nn


class QuantizationDtype:
    qfloat8 = "qfloat8"
    qint2 = "qint2"
    qint4 = "qint4"
    qint8 = "qint8"


def into_qtype(qtype: QuantizationDtype) -> qtype:
    if qtype == QuantizationDtype.qfloat8:
        return qfloat8
    elif qtype == QuantizationDtype.qint4:
        return qint4
    elif qtype == QuantizationDtype.qint8:
        return qint8
    else:
        raise ValueError(f"Unknown qtype: {qtype}")


def _set_module_by_name(parent_module, name, child_module):
    module_names = name.split(".")
    if len(module_names) == 1:
        setattr(parent_module, name, child_module)
    else:
        parent_module_name = name[: name.rindex(".")]
        parent_module = parent_module.get_submodule(parent_module_name)
        setattr(parent_module, module_names[-1], child_module)


def _quantize_submodule(
    model: torch.nn.Module,
    name: str,
    module: torch.nn.Module,
    weights: Optional[Union[str, qtype]] = None,
    activations: Optional[Union[str, qtype]] = None,
    optimizer: Optional[Optimizer] = None,
):
    if isinstance(module, CublasLinear):
        return 0
    num_quant = 0
    qmodule = quantize_module(
        module, weights=weights, activations=activations, optimizer=optimizer
    )
    if qmodule is not None:
        _set_module_by_name(model, name, qmodule)
        # num_quant += 1
        qmodule.name = name
        for name, param in module.named_parameters():
            # Save device memory by clearing parameters
            setattr(module, name, None)
            del param
        num_quant += 1

    return num_quant


def _quantize(
    model: torch.nn.Module,
    weights: Optional[Union[str, qtype]] = None,
    activations: Optional[Union[str, qtype]] = None,
    optimizer: Optional[Optimizer] = None,
    include: Optional[Union[str, List[str]]] = None,
    exclude: Optional[Union[str, List[str]]] = None,
):
    """Quantize the specified model submodules

    Recursively quantize the submodules of the specified parent model.

    Only modules that have quantized counterparts will be quantized.

    If include patterns are specified, the submodule name must match one of them.

    If exclude patterns are specified, the submodule must not match one of them.

    Include or exclude patterns are Unix shell-style wildcards which are NOT regular expressions. See
    https://docs.python.org/3/library/fnmatch.html for more details.

    Note: quantization happens in-place and modifies the original model and its descendants.

    Args:
        model (`torch.nn.Module`): the model whose submodules will be quantized.
        weights (`Optional[Union[str, qtype]]`): the qtype for weights quantization.
        activations (`Optional[Union[str, qtype]]`): the qtype for activations quantization.
        include (`Optional[Union[str, List[str]]]`):
            Patterns constituting the allowlist. If provided, module names must match at
            least one pattern from the allowlist.
        exclude (`Optional[Union[str, List[str]]]`):
            Patterns constituting the denylist. If provided, module names must not match
            any patterns from the denylist.
    """
    num_quant = 0
    if include is not None:
        include = [include] if isinstance(include, str) else exclude
    if exclude is not None:
        exclude = [exclude] if isinstance(exclude, str) else exclude
    for name, m in model.named_modules():
        if include is not None and not any(
            fnmatch(name, pattern) for pattern in include
        ):
            continue
        if exclude is not None and any(fnmatch(name, pattern) for pattern in exclude):
            continue
        num_quant += _quantize_submodule(
            model,
            name,
            m,
            weights=weights,
            activations=activations,
            optimizer=optimizer,
        )
    return num_quant


def _freeze(model):
    for name, m in model.named_modules():
        if isinstance(m, QModuleMixin):
            m.freeze()


def _is_block_compilable(module: nn.Module) -> bool:
    for module in module.modules():
        if _is_quantized(module):
            return False
    if _is_quantized(module):
        return False
    return True


def _simple_swap_linears(model: nn.Module, root_name: str = ""):
    for name, module in model.named_children():
        if (
            _is_linear(module)
            and hasattr(module, "weight")
            and module.weight is not None
            and module.weight.data is not None
        ):
            weights = module.weight.data
            bias = None
            if module.bias is not None:
                bias = module.bias.data
            with torch.device(module.weight.device):
                new_cublas = CublasLinear(
                    module.in_features,
                    module.out_features,
                    bias=bias is not None,
                    device=module.weight.device,
                    dtype=module.weight.dtype,
                )
            new_cublas.weight.data = weights
            if bias is not None:
                new_cublas.bias.data = bias
            setattr(model, name, new_cublas)
            if root_name == "":
                secho(f"Replaced {name} with CublasLinear", fg="green")
            else:
                secho(f"Replaced {root_name}.{name} with CublasLinear", fg="green")
        else:
            if root_name == "":
                _simple_swap_linears(module, str(name))
            else:
                _simple_swap_linears(module, str(root_name) + "." + str(name))


def _full_quant(
    model, max_quants=24, current_quants=0, quantization_dtype: qtype = qfloat8
):
    if current_quants < max_quants:
        current_quants += _quantize(model, quantization_dtype)
        _freeze(model)
        print(f"Quantized {current_quants} modules with {quantization_dtype}")
    return current_quants


def _is_linear(module: nn.Module) -> bool:
    return not isinstance(
        module, (QLinear, QConv2d, QLayerNorm, CublasLinear)
    ) and isinstance(module, nn.Linear)


def _is_quantized(module: nn.Module) -> bool:
    return isinstance(module, (QLinear, QConv2d, QLayerNorm))


def quantize_and_dispatch_to_device(
    flow_model: nn.Module,
    flux_device: torch.device = torch.device("cuda"),
    flux_dtype: torch.dtype = torch.float16,
    num_layers_to_quantize: int = 20,
    quantization_dtype: QuantizationDtype = QuantizationDtype.qfloat8,
    compile_blocks: bool = True,
    compile_extras: bool = True,
    quantize_extras: bool = False,
    replace_linears: bool = True,
):
    quant_type = into_qtype(quantization_dtype)
    num_quanted = 0
    flow_model = flow_model.requires_grad_(False).eval().type(flux_dtype)
    for block in flow_model.single_blocks:
        block.cuda(flux_device)
        if num_quanted < num_layers_to_quantize:
            num_quanted = _full_quant(
                block,
                num_layers_to_quantize,
                num_quanted,
                quantization_dtype=quant_type,
            )

    for block in flow_model.double_blocks:
        block.cuda(flux_device)
        if num_quanted < num_layers_to_quantize:
            num_quanted = _full_quant(
                block,
                num_layers_to_quantize,
                num_quanted,
                quantization_dtype=quant_type,
            )

    to_gpu_extras = [
        "vector_in",
        "img_in",
        "txt_in",
        "time_in",
        "guidance_in",
        "final_layer",
        "pe_embedder",
    ]

    if compile_blocks:
        for i, block in enumerate(flow_model.single_blocks):
            if _is_block_compilable(block):
                block.compile()
                secho(f"Compiled block {i}", fg="green")
        for i, block in enumerate(flow_model.double_blocks):
            if _is_block_compilable(block):
                block.compile()
                secho(f"Compiled block {i}", fg="green")

    if replace_linears:
        _simple_swap_linears(flow_model)
    for extra in to_gpu_extras:
        m_extra = getattr(flow_model, extra).cuda(flux_device).type(flux_dtype)
        if compile_extras:
            if extra in ["time_in", "vector_in", "guidance_in", "final_layer"]:
                m_extra.compile()
                secho(
                    f"Compiled extra {extra} -- {m_extra.__class__.__name__}",
                    fg="green",
                )
        elif quantize_extras:
            if not isinstance(m_extra, nn.Linear):
                _full_quant(
                    m_extra,
                    current_quants=num_quanted,
                    max_quants=num_layers_to_quantize,
                    quantization_dtype=quantization_dtype,
                )
    return flow_model