Safetensors
aredden's picture
Remove unnecessary code, hide prints behind debug flag, hide warnings
0f3134f
raw
history blame
10 kB
import json
from pathlib import Path
from typing import Literal, Optional
import torch
from modules.autoencoder import AutoEncoder, AutoEncoderParams
from modules.conditioner import HFEmbedder
from modules.flux_model import Flux, FluxParams
from modules.flux_model_f8 import Flux as FluxF8
from safetensors.torch import load_file as load_sft
from enum import StrEnum
from pydantic import BaseModel, ConfigDict
from loguru import logger
class ModelVersion(StrEnum):
flux_dev = "flux-dev"
flux_schnell = "flux-schnell"
class QuantizationDtype(StrEnum):
qfloat8 = "qfloat8"
qint2 = "qint2"
qint4 = "qint4"
qint8 = "qint8"
class ModelSpec(BaseModel):
version: ModelVersion
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
repo_id: str | None
repo_flow: str | None
repo_ae: str | None
text_enc_max_length: int = 512
text_enc_path: str | None
text_enc_device: str | torch.device | None = "cuda:0"
ae_device: str | torch.device | None = "cuda:0"
flux_device: str | torch.device | None = "cuda:0"
flow_dtype: str = "float16"
ae_dtype: str = "bfloat16"
text_enc_dtype: str = "bfloat16"
# unused / deprecated
num_to_quant: Optional[int] = 20
quantize_extras: bool = False
compile_extras: bool = False
compile_blocks: bool = False
flow_quantization_dtype: Optional[QuantizationDtype] = QuantizationDtype.qfloat8
text_enc_quantization_dtype: Optional[QuantizationDtype] = QuantizationDtype.qfloat8
ae_quantization_dtype: Optional[QuantizationDtype] = None
clip_quantization_dtype: Optional[QuantizationDtype] = None
offload_text_encoder: bool = False
offload_vae: bool = False
offload_flow: bool = False
prequantized_flow: bool = False
model_config: ConfigDict = {
"arbitrary_types_allowed": True,
"use_enum_values": True,
}
def load_models(config: ModelSpec) -> tuple[Flux, AutoEncoder, HFEmbedder, HFEmbedder]:
flow = load_flow_model(config)
ae = load_autoencoder(config)
clip, t5 = load_text_encoders(config)
return flow, ae, clip, t5
def parse_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, str):
return torch.device(device)
elif isinstance(device, torch.device):
return device
else:
return torch.device("cuda:0")
def into_dtype(dtype: str) -> torch.dtype:
if dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
elif dtype == "float32":
return torch.float32
else:
raise ValueError(f"Invalid dtype: {dtype}")
def into_device(device: str | torch.device | None) -> torch.device:
if isinstance(device, str):
return torch.device(device)
elif isinstance(device, torch.device):
return device
elif isinstance(device, int):
return torch.device(f"cuda:{device}")
else:
return torch.device("cuda:0")
def load_config(
name: ModelVersion = ModelVersion.flux_dev,
flux_path: str | None = None,
ae_path: str | None = None,
text_enc_path: str | None = None,
text_enc_device: str | torch.device | None = None,
ae_device: str | torch.device | None = None,
flux_device: str | torch.device | None = None,
flow_dtype: str = "float16",
ae_dtype: str = "bfloat16",
text_enc_dtype: str = "bfloat16",
num_to_quant: Optional[int] = 20,
compile_extras: bool = False,
compile_blocks: bool = False,
offload_text_enc: bool = False,
offload_ae: bool = False,
offload_flow: bool = False,
quant_text_enc: Optional[Literal["float8", "qint2", "qint4", "qint8"]] = None,
quant_ae: bool = False,
prequantized_flow: bool = False,
) -> ModelSpec:
"""
Load a model configuration using the passed arguments.
"""
text_enc_device = str(parse_device(text_enc_device))
ae_device = str(parse_device(ae_device))
flux_device = str(parse_device(flux_device))
return ModelSpec(
version=name,
repo_id=(
"black-forest-labs/FLUX.1-dev"
if name == ModelVersion.flux_dev
else "black-forest-labs/FLUX.1-schnell"
),
repo_flow=(
"flux1-dev.sft" if name == ModelVersion.flux_dev else "flux1-schnell.sft"
),
repo_ae="ae.sft",
ckpt_path=flux_path,
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=name == ModelVersion.flux_dev,
),
ae_path=ae_path,
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
text_enc_path=text_enc_path,
text_enc_device=text_enc_device,
ae_device=ae_device,
flux_device=flux_device,
flow_dtype=flow_dtype,
ae_dtype=ae_dtype,
text_enc_dtype=text_enc_dtype,
text_enc_max_length=512 if name == ModelVersion.flux_dev else 256,
num_to_quant=num_to_quant,
compile_extras=compile_extras,
compile_blocks=compile_blocks,
offload_flow=offload_flow,
offload_text_encoder=offload_text_enc,
offload_vae=offload_ae,
text_enc_quantization_dtype={
"float8": QuantizationDtype.qfloat8,
"qint2": QuantizationDtype.qint2,
"qint4": QuantizationDtype.qint4,
"qint8": QuantizationDtype.qint8,
}.get(quant_text_enc, None),
ae_quantization_dtype=QuantizationDtype.qfloat8 if quant_ae else None,
prequantized_flow=prequantized_flow,
)
def load_config_from_path(path: str) -> ModelSpec:
path_path = Path(path)
if not path_path.exists():
raise ValueError(f"Path {path} does not exist")
if not path_path.is_file():
raise ValueError(f"Path {path} is not a file")
return ModelSpec(**json.loads(path_path.read_text()))
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
logger.warning("\n" + "-" * 79 + "\n")
logger.warning(
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
)
elif len(missing) > 0:
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
logger.warning(
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
)
def load_flow_model(config: ModelSpec) -> Flux | FluxF8:
ckpt_path = config.ckpt_path
FluxClass = Flux
if config.prequantized_flow:
FluxClass = FluxF8
with torch.device("meta"):
model = FluxClass(config.params, dtype=into_dtype(config.flow_dtype)).type(
into_dtype(config.flow_dtype)
)
if ckpt_path is not None:
# load_sft doesn't support torch.device
sd = load_sft(ckpt_path, device="cpu")
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
if not config.prequantized_flow:
model.type(into_dtype(config.flow_dtype))
return model
def load_text_encoders(config: ModelSpec) -> tuple[HFEmbedder, HFEmbedder]:
clip = HFEmbedder(
"openai/clip-vit-large-patch14",
max_length=77,
torch_dtype=into_dtype(config.text_enc_dtype),
device=into_device(config.text_enc_device).index or 0,
quantization_dtype=config.clip_quantization_dtype,
)
t5 = HFEmbedder(
config.text_enc_path,
max_length=config.text_enc_max_length,
torch_dtype=into_dtype(config.text_enc_dtype),
device=into_device(config.text_enc_device).index or 0,
quantization_dtype=config.text_enc_quantization_dtype,
)
return clip, t5
def load_autoencoder(config: ModelSpec) -> AutoEncoder:
ckpt_path = config.ae_path
with torch.device("meta" if ckpt_path is not None else config.ae_device):
ae = AutoEncoder(config.ae_params).to(into_dtype(config.ae_dtype))
if ckpt_path is not None:
sd = load_sft(ckpt_path, device=str(config.ae_device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
ae.to(device=into_device(config.ae_device), dtype=into_dtype(config.ae_dtype))
if config.ae_quantization_dtype is not None:
from float8_quantize import recursive_swap_linears
recursive_swap_linears(ae)
if config.offload_vae:
ae.to("cpu")
torch.cuda.empty_cache()
return ae
class LoadedModels(BaseModel):
flow: Flux | FluxF8
ae: AutoEncoder
clip: HFEmbedder
t5: HFEmbedder
config: ModelSpec
model_config = {
"arbitrary_types_allowed": True,
"use_enum_values": True,
}
def load_models_from_config_path(
path: str,
) -> LoadedModels:
config = load_config_from_path(path)
clip, t5 = load_text_encoders(config)
return LoadedModels(
flow=load_flow_model(config),
ae=load_autoencoder(config),
clip=clip,
t5=t5,
config=config,
)
def load_models_from_config(config: ModelSpec) -> LoadedModels:
clip, t5 = load_text_encoders(config)
return LoadedModels(
flow=load_flow_model(config),
ae=load_autoencoder(config),
clip=clip,
t5=t5,
config=config,
)