|
from collections import namedtuple |
|
import os |
|
import torch |
|
|
|
DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1" |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cudnn.benchmark_limit = 20 |
|
torch.set_float32_matmul_precision("high") |
|
import math |
|
|
|
from torch import Tensor, nn |
|
from pydantic import BaseModel |
|
from torch.nn import functional as F |
|
|
|
try: |
|
from cublas_ops import CublasLinear |
|
except ImportError: |
|
CublasLinear = nn.Linear |
|
|
|
|
|
class FluxParams(BaseModel): |
|
in_channels: int |
|
vec_in_dim: int |
|
context_in_dim: int |
|
hidden_size: int |
|
mlp_ratio: float |
|
num_heads: int |
|
depth: int |
|
depth_single_blocks: int |
|
axes_dim: list[int] |
|
theta: int |
|
qkv_bias: bool |
|
guidance_embed: bool |
|
|
|
|
|
|
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: |
|
q, k = apply_rope(q, k, pe) |
|
x = F.scaled_dot_product_attention(q, k, v).transpose(1, 2) |
|
x = x.reshape(*x.shape[:-2], -1) |
|
return x |
|
|
|
|
|
|
|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor: |
|
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim |
|
omega = 1.0 / (theta**scale) |
|
out = torch.einsum("...n,d->...nd", pos, omega) |
|
out = torch.stack( |
|
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1 |
|
) |
|
out = out.reshape(*out.shape[:-1], 2, 2) |
|
return out |
|
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: |
|
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2) |
|
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2) |
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] |
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] |
|
return xq_out.reshape(*xq.shape), xk_out.reshape(*xk.shape) |
|
|
|
|
|
class EmbedND(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
theta: int, |
|
axes_dim: list[int], |
|
dtype: torch.dtype = torch.bfloat16, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
self.dtype = dtype |
|
|
|
def forward(self, ids: Tensor) -> Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[ |
|
rope(ids[..., i], self.axes_dim[i], self.theta).type(self.dtype) |
|
for i in range(n_axes) |
|
], |
|
dim=-3, |
|
) |
|
|
|
return emb.unsqueeze(1) |
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
t = time_factor * t |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) |
|
/ half |
|
) |
|
|
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
class MLPEmbedder(nn.Module): |
|
def __init__(self, in_dim: int, hidden_dim: int): |
|
super().__init__() |
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) |
|
self.silu = nn.SiLU() |
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.out_layer(self.silu(self.in_layer(x))) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x: Tensor): |
|
return F.rms_norm(x, self.scale.shape, self.scale, eps=1e-6) |
|
|
|
|
|
class QKNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.query_norm = RMSNorm(dim) |
|
self.key_norm = RMSNorm(dim) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: |
|
q = self.query_norm(q) |
|
k = self.key_norm(k) |
|
return q, k |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.norm = QKNorm(head_dim) |
|
self.proj = nn.Linear(dim, dim) |
|
self.K = 3 |
|
self.H = self.num_heads |
|
self.KH = self.K * self.H |
|
|
|
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]: |
|
B, L, D = x.shape |
|
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4) |
|
return q, k, v |
|
|
|
def forward(self, x: Tensor, pe: Tensor) -> Tensor: |
|
qkv = self.qkv(x) |
|
q, k, v = self.rearrange_for_norm(qkv) |
|
q, k = self.norm(q, k, v) |
|
x = attention(q, k, v, pe=pe) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
ModulationOut = namedtuple("ModulationOut", ["shift", "scale", "gate"]) |
|
|
|
|
|
class Modulation(nn.Module): |
|
def __init__(self, dim: int, double: bool): |
|
super().__init__() |
|
self.is_double = double |
|
self.multiplier = 6 if double else 3 |
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) |
|
self.act = nn.SiLU() |
|
|
|
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: |
|
out = self.lin(self.act(vec))[:, None, :].chunk(self.multiplier, dim=-1) |
|
|
|
return ( |
|
ModulationOut(*out[:3]), |
|
ModulationOut(*out[3:]) if self.is_double else None, |
|
) |
|
|
|
|
|
class DoubleStreamBlock(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float, |
|
qkv_bias: bool = False, |
|
dtype: torch.dtype = torch.float16, |
|
): |
|
super().__init__() |
|
self.dtype = dtype |
|
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.img_mod = Modulation(hidden_size, double=True) |
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_attn = SelfAttention( |
|
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias |
|
) |
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
self.txt_mod = Modulation(hidden_size, double=True) |
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_attn = SelfAttention( |
|
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias |
|
) |
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
self.K = 3 |
|
self.H = self.num_heads |
|
self.KH = self.K * self.H |
|
|
|
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]: |
|
B, L, D = x.shape |
|
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4) |
|
return q, k, v |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
txt: Tensor, |
|
vec: Tensor, |
|
pe: Tensor, |
|
) -> tuple[Tensor, Tensor]: |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
img_q, img_k, img_v = self.rearrange_for_norm(img_qkv) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
txt_q, txt_k, txt_v = self.rearrange_for_norm(txt_qkv) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
q = torch.cat((txt_q, img_q), dim=2) |
|
k = torch.cat((txt_k, img_k), dim=2) |
|
v = torch.cat((txt_v, img_v), dim=2) |
|
|
|
attn = attention(q, k, v, pe=pe) |
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] |
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp( |
|
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift |
|
).clamp(min=-384 * 2, max=384 * 2) |
|
|
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt = txt + txt_mod2.gate * self.txt_mlp( |
|
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift |
|
).clamp(min=-384 * 2, max=384 * 2) |
|
|
|
return img, txt |
|
|
|
|
|
class SingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: float | None = None, |
|
dtype: torch.dtype = torch.float16, |
|
): |
|
super().__init__() |
|
self.dtype = dtype |
|
self.hidden_dim = hidden_size |
|
self.num_heads = num_heads |
|
head_dim = hidden_size // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) |
|
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) |
|
|
|
self.norm = QKNorm(head_dim) |
|
|
|
self.hidden_size = hidden_size |
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.mlp_act = nn.GELU(approximate="tanh") |
|
self.modulation = Modulation(hidden_size, double=False) |
|
|
|
self.K = 3 |
|
self.H = self.num_heads |
|
self.KH = self.K * self.H |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: |
|
mod = self.modulation(vec)[0] |
|
pre_norm = self.pre_norm(x) |
|
x_mod = (1 + mod.scale) * pre_norm + mod.shift |
|
qkv, mlp = torch.split( |
|
self.linear1(x_mod), |
|
[3 * self.hidden_size, self.mlp_hidden_dim], |
|
dim=-1, |
|
) |
|
B, L, D = qkv.shape |
|
q, k, v = qkv.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4) |
|
q, k = self.norm(q, k, v) |
|
attn = attention(q, k, v, pe=pe) |
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)).clamp( |
|
min=-384 * 4, max=384 * 4 |
|
) |
|
return x + mod.gate * output |
|
|
|
|
|
class LastLayer(nn.Module): |
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = CublasLinear( |
|
hidden_size, patch_size * patch_size * out_channels, bias=True |
|
) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), CublasLinear(hidden_size, 2 * hidden_size, bias=True) |
|
) |
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor: |
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) |
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class Flux(nn.Module): |
|
""" |
|
Transformer model for flow matching on sequences. |
|
""" |
|
|
|
def __init__(self, params: FluxParams, dtype: torch.dtype = torch.float16): |
|
super().__init__() |
|
|
|
self.dtype = dtype |
|
self.params = params |
|
self.in_channels = params.in_channels |
|
self.out_channels = self.in_channels |
|
if params.hidden_size % params.num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" |
|
) |
|
pe_dim = params.hidden_size // params.num_heads |
|
if sum(params.axes_dim) != pe_dim: |
|
raise ValueError( |
|
f"Got {params.axes_dim} but expected positional dim {pe_dim}" |
|
) |
|
self.hidden_size = params.hidden_size |
|
self.num_heads = params.num_heads |
|
self.pe_embedder = EmbedND( |
|
dim=pe_dim, |
|
theta=params.theta, |
|
axes_dim=params.axes_dim, |
|
dtype=self.dtype, |
|
) |
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) |
|
self.guidance_in = ( |
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
if params.guidance_embed |
|
else nn.Identity() |
|
) |
|
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
qkv_bias=params.qkv_bias, |
|
dtype=self.dtype, |
|
) |
|
for _ in range(params.depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
dtype=self.dtype, |
|
) |
|
for _ in range(params.depth_single_blocks) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
guidance: Tensor | None = None, |
|
) -> Tensor: |
|
if img.ndim != 3 or txt.ndim != 3: |
|
raise ValueError("Input img and txt tensors must have 3 dimensions.") |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256).type(self.dtype)) |
|
|
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError( |
|
"Didn't get guidance strength for guidance distilled model." |
|
) |
|
vec = vec + self.guidance_in( |
|
timestep_embedding(guidance, 256).type(self.dtype) |
|
) |
|
vec = vec + self.vector_in(y) |
|
|
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
|
|
for block in self.double_blocks: |
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) |
|
|
|
img = torch.cat((txt, img), 1) |
|
|
|
|
|
for block in self.single_blocks: |
|
img = block(img, vec=vec, pe=pe) |
|
|
|
img = img[:, txt.shape[1] :, ...] |
|
img = self.final_layer(img, vec) |
|
return img |
|
|
|
@classmethod |
|
def from_pretrained(cls, path: str, dtype: torch.dtype = torch.bfloat16) -> "Flux": |
|
from util import load_config_from_path |
|
from safetensors.torch import load_file |
|
|
|
config = load_config_from_path(path) |
|
with torch.device("meta"): |
|
klass = cls(params=config.params, dtype=dtype).type(dtype) |
|
|
|
ckpt = load_file(config.ckpt_path, device="cpu") |
|
klass.load_state_dict(ckpt, assign=True) |
|
return klass.to("cpu") |
|
|