Safetensors
FLUX.1-dev-fp8-flumina / float8_quantize.py
aredden's picture
remove torchao dependency, quantize entirely via linear
d45a331
raw
history blame
18.7 kB
from loguru import logger
import torch
import torch.nn as nn
from torch.nn import init
import math
from torch.compiler import is_compiling
from torch import __version__
from torch.version import cuda
from modules.flux_model import Modulation
IS_TORCH_2_4 = __version__ < (2, 4, 9)
LT_TORCH_2_4 = __version__ < (2, 4)
if LT_TORCH_2_4:
if not hasattr(torch, "_scaled_mm"):
raise RuntimeError(
"This version of PyTorch is not supported. Please upgrade to PyTorch 2.4 with CUDA 12.4 or later."
)
CUDA_VERSION = float(cuda) if cuda else 0
if CUDA_VERSION < 12.4:
raise RuntimeError(
f"This version of PyTorch is not supported. Please upgrade to PyTorch 2.4 with CUDA 12.4 or later got torch version {__version__} and CUDA version {cuda}."
)
try:
from cublas_ops import CublasLinear
except ImportError:
CublasLinear = type(None)
class F8Linear(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=torch.float16,
float8_dtype=torch.float8_e4m3fn,
float_weight: torch.Tensor = None,
float_bias: torch.Tensor = None,
num_scale_trials: int = 12,
input_float8_dtype=torch.float8_e5m2,
) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.float8_dtype = float8_dtype
self.input_float8_dtype = input_float8_dtype
self.input_scale_initialized = False
self.weight_initialized = False
self.max_value = torch.finfo(self.float8_dtype).max
self.input_max_value = torch.finfo(self.input_float8_dtype).max
factory_kwargs = {"dtype": dtype, "device": device}
if float_weight is None:
self.weight = nn.Parameter(
torch.empty((out_features, in_features), **factory_kwargs)
)
else:
self.weight = nn.Parameter(
float_weight, requires_grad=float_weight.requires_grad
)
if float_bias is None:
if bias:
self.bias = nn.Parameter(
torch.empty(out_features, **factory_kwargs),
)
else:
self.register_parameter("bias", None)
else:
self.bias = nn.Parameter(float_bias, requires_grad=float_bias.requires_grad)
self.num_scale_trials = num_scale_trials
self.input_amax_trials = torch.zeros(
num_scale_trials, requires_grad=False, device=device, dtype=torch.float32
)
self.trial_index = 0
self.register_buffer("scale", None)
self.register_buffer(
"input_scale",
None,
)
self.register_buffer(
"float8_data",
None,
)
self.scale_reciprocal = self.register_buffer("scale_reciprocal", None)
self.input_scale_reciprocal = self.register_buffer(
"input_scale_reciprocal", None
)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
sd = {k.replace(prefix, ""): v for k, v in state_dict.items()}
if "weight" in sd:
if (
"float8_data" not in sd
or sd["float8_data"] is None
and sd["weight"].shape == (self.out_features, self.in_features)
):
# Initialize as if it's an F8Linear that needs to be quantized
self._parameters["weight"] = nn.Parameter(
sd["weight"], requires_grad=False
)
if "bias" in sd:
self._parameters["bias"] = nn.Parameter(
sd["bias"], requires_grad=False
)
self.quantize_weight()
elif sd["float8_data"].shape == (
self.out_features,
self.in_features,
) and sd["weight"] == torch.zeros_like(sd["weight"]):
w = sd["weight"]
# Set the init values as if it's already quantized float8_data
self._buffers["float8_data"] = sd["float8_data"]
self._parameters["weight"] = nn.Parameter(
torch.zeros(
1,
dtype=w.dtype,
device=w.device,
requires_grad=False,
)
)
if "bias" in sd:
self._parameters["bias"] = nn.Parameter(
sd["bias"], requires_grad=False
)
self.weight_initialized = True
# Check if scales and reciprocals are initialized
if all(
key in sd
for key in [
"scale",
"input_scale",
"scale_reciprocal",
"input_scale_reciprocal",
]
):
self.scale = sd["scale"].float()
self.input_scale = sd["input_scale"].float()
self.scale_reciprocal = sd["scale_reciprocal"].float()
self.input_scale_reciprocal = sd["input_scale_reciprocal"].float()
self.input_scale_initialized = True
self.trial_index = self.num_scale_trials
elif "scale" in sd and "scale_reciprocal" in sd:
self.scale = sd["scale"].float()
self.input_scale = (
sd["input_scale"].float() if "input_scale" in sd else None
)
self.scale_reciprocal = sd["scale_reciprocal"].float()
self.input_scale_reciprocal = (
sd["input_scale_reciprocal"].float()
if "input_scale_reciprocal" in sd
else None
)
self.input_scale_initialized = (
True if "input_scale" in sd else False
)
self.trial_index = (
self.num_scale_trials if "input_scale" in sd else 0
)
self.input_amax_trials = torch.zeros(
self.num_scale_trials,
requires_grad=False,
dtype=torch.float32,
device=self.weight.device,
)
self.input_scale_initialized = False
self.trial_index = 0
else:
# If scales are not initialized, reset trials
self.input_scale_initialized = False
self.trial_index = 0
self.input_amax_trials = torch.zeros(
self.num_scale_trials, requires_grad=False, dtype=torch.float32
)
else:
raise RuntimeError(
f"Weight tensor not found or has incorrect shape in state dict: {sd.keys()}"
)
else:
raise RuntimeError(
"Weight tensor not found or has incorrect shape in state dict"
)
def quantize_weight(self):
if self.weight_initialized:
return
amax = torch.max(torch.abs(self.weight.data)).float()
self.scale = self.amax_to_scale(amax, self.max_value)
self.float8_data = self.to_fp8_saturated(
self.weight.data, self.scale, self.max_value
).to(self.float8_dtype)
self.scale_reciprocal = self.scale.reciprocal()
self.weight.data = torch.zeros(
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
)
self.weight_initialized = True
def set_weight_tensor(self, tensor: torch.Tensor):
self.weight.data = tensor
self.weight_initialized = False
self.quantize_weight()
def amax_to_scale(self, amax, max_val):
return (max_val / torch.clamp(amax, min=1e-12)).clamp(max=max_val)
def to_fp8_saturated(self, x, scale, max_val):
return (x * scale).clamp(-max_val, max_val)
def quantize_input(self, x: torch.Tensor):
if self.input_scale_initialized:
return self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
elif self.trial_index < self.num_scale_trials:
amax = torch.max(torch.abs(x)).float()
self.input_amax_trials[self.trial_index] = amax
self.trial_index += 1
self.input_scale = self.amax_to_scale(
self.input_amax_trials[: self.trial_index].max(), self.input_max_value
)
self.input_scale_reciprocal = self.input_scale.reciprocal()
return self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
else:
self.input_scale = self.amax_to_scale(
self.input_amax_trials.max(), self.input_max_value
)
self.input_scale_reciprocal = self.input_scale.reciprocal()
self.input_scale_initialized = True
return self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
def reset_parameters(self) -> None:
if self.weight_initialized:
self.weight = nn.Parameter(
torch.empty(
(self.out_features, self.in_features),
**{
"dtype": self.weight.dtype,
"device": self.weight.device,
},
)
)
self.weight_initialized = False
self.input_scale_initialized = False
self.trial_index = 0
self.input_amax_trials.zero_()
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)
self.quantize_weight()
self.max_value = torch.finfo(self.float8_dtype).max
self.input_max_value = torch.finfo(self.input_float8_dtype).max
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.input_scale_initialized or is_compiling():
x = self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
else:
x = self.quantize_input(x)
prev_dims = x.shape[:-1]
x = x.view(-1, self.in_features)
# float8 matmul, much faster than float16 matmul w/ float32 accumulate on ADA devices!
out = torch._scaled_mm(
x,
self.float8_data.T,
scale_a=self.input_scale_reciprocal,
scale_b=self.scale_reciprocal,
bias=self.bias,
out_dtype=self.weight.dtype,
use_fast_accum=True,
)
if IS_TORCH_2_4:
out = out[0]
out = out.view(*prev_dims, self.out_features)
return out
@classmethod
def from_linear(
cls,
linear: nn.Linear,
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
) -> "F8Linear":
f8_lin = cls(
in_features=linear.in_features,
out_features=linear.out_features,
bias=linear.bias is not None,
device=linear.weight.device,
dtype=linear.weight.dtype,
float8_dtype=float8_dtype,
float_weight=linear.weight.data,
float_bias=(linear.bias.data if linear.bias is not None else None),
input_float8_dtype=input_float8_dtype,
)
f8_lin.quantize_weight()
return f8_lin
@torch.inference_mode()
def recursive_swap_linears(
model: nn.Module,
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
quantize_modulation: bool = True,
ignore_keys: list[str] = [],
) -> None:
"""
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
This function traverses the model's structure and replaces each nn.Linear
instance with an F8Linear instance, which uses 8-bit floating point
quantization for weights. The original linear layer's weights are deleted
after conversion to save memory.
Args:
model (nn.Module): The PyTorch model to modify.
Note:
This function modifies the model in-place. After calling this function,
all linear layers in the model will be using 8-bit quantization.
"""
for name, child in model.named_children():
if name in ignore_keys:
continue
if isinstance(child, Modulation) and not quantize_modulation:
continue
if isinstance(child, nn.Linear) and not isinstance(
child, (F8Linear, CublasLinear)
):
setattr(
model,
name,
F8Linear.from_linear(
child,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
),
)
del child
else:
recursive_swap_linears(
child,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
ignore_keys=ignore_keys,
)
@torch.inference_mode()
def swap_to_cublaslinear(model: nn.Module):
if not isinstance(CublasLinear, type(torch.nn.Module)):
return
for name, child in model.named_children():
if isinstance(child, nn.Linear) and not isinstance(
child, (F8Linear, CublasLinear)
):
cublas_lin = CublasLinear(
child.in_features,
child.out_features,
bias=child.bias is not None,
dtype=child.weight.dtype,
device=child.weight.device,
)
cublas_lin.weight.data = child.weight.clone().detach()
cublas_lin.bias.data = child.bias.clone().detach()
setattr(model, name, cublas_lin)
del child
else:
swap_to_cublaslinear(child)
@torch.inference_mode()
def quantize_flow_transformer_and_dispatch_float8(
flow_model: nn.Module,
device=torch.device("cuda"),
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
offload_flow=False,
swap_linears_with_cublaslinear=True,
flow_dtype=torch.float16,
quantize_modulation: bool = True,
quantize_flow_embedder_layers: bool = True,
) -> nn.Module:
"""
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
Iteratively pushes each module to device, evals, replaces linear layers with F8Linear except for final_layer, and quantizes.
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
After dispatching, if offload_flow is True, offloads the model to cpu.
if swap_linears_with_cublaslinear is true, and flow_dtype == torch.float16, then swap all linears with cublaslinears for 2x performance boost on consumer GPUs.
Otherwise will skip the cublaslinear swap.
For added extra precision, you can set quantize_flow_embedder_layers to False,
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
at the expense of ~512MB more VRAM usage.
For added extra precision, you can set quantize_modulation to False,
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
at the expense of ~2GB more VRAM usage, but- has a much higher impact on image quality than the embedder layers.
"""
for module in flow_model.double_blocks:
module.to(device)
module.eval()
recursive_swap_linears(
module,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
)
torch.cuda.empty_cache()
for module in flow_model.single_blocks:
module.to(device)
module.eval()
recursive_swap_linears(
module,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
)
torch.cuda.empty_cache()
to_gpu_extras = [
"vector_in",
"img_in",
"txt_in",
"time_in",
"guidance_in",
"final_layer",
"pe_embedder",
]
for module in to_gpu_extras:
m_extra = getattr(flow_model, module)
if m_extra is None:
continue
m_extra.to(device)
m_extra.eval()
if isinstance(m_extra, nn.Linear) and not isinstance(
m_extra, (F8Linear, CublasLinear)
):
if quantize_flow_embedder_layers:
setattr(
flow_model,
module,
F8Linear.from_linear(
m_extra,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
),
)
del m_extra
elif module != "final_layer":
if quantize_flow_embedder_layers:
recursive_swap_linears(
m_extra,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
)
torch.cuda.empty_cache()
if (
swap_linears_with_cublaslinear
and flow_dtype == torch.float16
and isinstance(CublasLinear, type(torch.nn.Linear))
):
swap_to_cublaslinear(flow_model)
elif swap_linears_with_cublaslinear and flow_dtype != torch.float16:
logger.warning("Skipping cublas linear swap because flow_dtype is not float16")
if offload_flow:
flow_model.to("cpu")
torch.cuda.empty_cache()
return flow_model