Safetensors
jamesr66a's picture
4:3 aspect ratio
fbb3e9e
raw
history blame
11.7 kB
# flumina.py
import torch
import io
import json
from fireworks.flumina import FluminaModule, main as flumina_main
from fireworks.flumina.route import post
import pydantic
from pydantic import BaseModel
from fastapi import Header
from fastapi.responses import Response
import math
import logging
import os
import re
import PIL.Image as Image
from typing import Optional, Set, Tuple
from flux_pipeline import FluxPipeline
from util import load_config, ModelVersion
_ASPECT_RATIOS = [
(1, 1),
(21, 9),
(16, 9),
(3, 2),
(5, 4),
(4, 5),
(2, 3),
(9, 16),
(9, 21),
(4, 3),
(3, 4),
]
# Util
def _aspect_ratio_to_width_height(aspect_ratio: str) -> Tuple[int, int]:
"""
Convert specified aspect ratio to a height/width pair.
"""
if ":" not in aspect_ratio:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
)
w, h = aspect_ratio.split(":")
try:
w, h = int(w), int(h)
except ValueError:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be in w:h format, e.g. 16:9"
)
if (w, h) not in _ASPECT_RATIOS:
raise ValueError(
f"Invalid aspect ratio: {aspect_ratio}. Aspect ratio must be one of {_ASPECT_RATIOS}"
)
# We consider megapixel not 10^6 pixels but 2^20 (1024x1024) pixels
TARGET_SIZE_MP = 1
target_size = TARGET_SIZE_MP * 2**20
width = math.sqrt(target_size / (w * h)) * w
height = math.sqrt(target_size / (w * h)) * h
PAD_MULTIPLE = 64
if PAD_MULTIPLE:
width = width // PAD_MULTIPLE * PAD_MULTIPLE
height = height // PAD_MULTIPLE * PAD_MULTIPLE
return int(width), int(height)
def encode_image(
image: Image.Image, mime_type: str, jpeg_quality: int = 95
) -> bytes:
buffered = io.BytesIO()
if mime_type == "image/jpeg":
if jpeg_quality < 0 or jpeg_quality > 100:
raise ValueError(
f"jpeg_quality must be between 0 and 100, not {jpeg_quality}"
)
image.save(buffered, format="JPEG", quality=jpeg_quality)
elif mime_type == "image/png":
image.save(buffered, format="PNG")
else:
raise ValueError(f"invalid mime_type {mime_type}")
return buffered.getvalue()
def parse_accept_header(accept: str) -> str:
# Split the string into the comma-separated components
parts = accept.split(",")
weighted_types = []
for part in parts:
# Use a regular expression to extract the media type and the optional q-factor
match = re.match(
r"(?P<media_type>[^;]+)(;q=(?P<q_factor>\d+(\.\d+)?))?", part.strip()
)
if match:
media_type = match.group("media_type").strip()
q_factor = (
float(match.group("q_factor")) if match.group("q_factor") else 1.0
)
weighted_types.append((media_type, q_factor))
else:
raise ValueError(f"Malformed Accept header value: {part.strip()}")
# Sort the media types by q-factor, descending
sorted_types = sorted(weighted_types, key=lambda x: x[1], reverse=True)
# Define a list of supported MIME types
supported_types = ["image/jpeg", "image/png"]
for media_type, _ in sorted_types:
if media_type in supported_types:
return media_type
elif media_type == "*/*":
return supported_types[0] # Default to the first supported type
elif media_type == "image/*":
# If "image/*" is specified, return the first matching supported image type
return supported_types[0]
raise ValueError(f"Accept header did not include any supported MIME types: {supported_types}")
# Define request and response schemata
class Text2ImageRequest(BaseModel):
prompt: str
aspect_ratio: str = "16:9"
guidance_scale: float = 3.5
num_inference_steps: int = 30
seed: int = 0
class Error(BaseModel):
object: str = "error"
type: str = "invalid_request_error"
message: str
class ErrorResponse(BaseModel):
error: Error = pydantic.Field(default_factory=Error)
class BillingInfo(BaseModel):
steps: int
height: int
width: int
is_control_net: bool = False
class FluminaModule(FluminaModule):
def __init__(self):
super().__init__()
# Read configuration from config.json
with open('config.json', 'r') as f:
config_data = json.load(f)
# Now, we need to construct the config and load the model
if 'config_path' in config_data:
self.pipeline = FluxPipeline.load_pipeline_from_config_path(
config_data['config_path'],
flow_model_path=config_data.get('flow_model_path', None)
)
else:
model_version = (
ModelVersion.flux_dev
if config_data.get('model_version', 'flux-dev') == "flux-dev"
else ModelVersion.flux_schnell
)
config = load_config(
model_version,
flux_path=config_data.get('flow_model_path', None),
flux_device=config_data.get('flux_device', 'cuda:0'),
ae_path=config_data.get('autoencoder_path', None),
ae_device=config_data.get('autoencoder_device', 'cuda:0'),
text_enc_path=config_data.get('text_enc_path', None),
text_enc_device=config_data.get('text_enc_device', 'cuda:0'),
flow_dtype="float16",
text_enc_dtype="bfloat16",
ae_dtype="bfloat16",
num_to_quant=config_data.get('num_to_quant', 20),
compile_extras=config_data.get('compile', False),
compile_blocks=config_data.get('compile', False),
quant_text_enc=(
None
if config_data.get('quant_text_enc', 'qfloat8') == "bf16"
else config_data.get('quant_text_enc', 'qfloat8')
),
quant_ae=config_data.get('quant_ae', False),
offload_flow=config_data.get('offload_flow', False),
offload_ae=config_data.get('offload_ae', True),
offload_text_enc=config_data.get('offload_text_enc', True),
prequantized_flow=config_data.get('prequantized_flow', False),
quantize_modulation=config_data.get('quantize_modulation', True),
quantize_flow_embedder_layers=config_data.get(
'quantize_flow_embedder_layers', False
),
)
self.pipeline = FluxPipeline.load_pipeline_from_config(config)
# Initialize LoRA adapters
self.lora_adapters: Set[str] = set()
self.active_lora_adapter: Optional[str] = None
# Warm-up
self._warm_up()
# Testing
self._test_return_sync_response = False
def _warm_up(self):
for f, s in _ASPECT_RATIOS:
print(f"Warm-up for aspect ratio {f}:{s}")
width, height = _aspect_ratio_to_width_height(f"{f}:{s}")
self.pipeline.generate(
prompt="a quick brown fox",
height=height,
width=width,
guidance=3.5,
num_steps=1,
seed=0,
)
def _error_response(self, code: int, message: str) -> Response:
response_json = ErrorResponse(
error=Error(message=message),
).json()
if self._test_return_sync_response:
return response_json
else:
return Response(
response_json,
status_code=code,
media_type="application/json",
)
def _image_response(
self, image_bytes: bytes, mime_type: str, billing_info: BillingInfo
):
if self._test_return_sync_response:
return image_bytes
else:
headers = {'Fireworks-Billing-Properties': billing_info.json()}
return Response(
image_bytes, status_code=200, media_type=mime_type, headers=headers
)
@post('/text_to_image')
async def text_to_image(
self,
body: Text2ImageRequest,
accept: str = Header("image/jpeg"),
):
mime_type = parse_accept_header(accept)
width, height = _aspect_ratio_to_width_height(body.aspect_ratio)
img_bio = self.pipeline.generate(
prompt=body.prompt,
height=height,
width=width,
guidance=body.guidance_scale,
num_steps=body.num_inference_steps,
seed=body.seed,
)
billing_info = BillingInfo(
steps=body.num_inference_steps,
height=height,
width=width,
)
return self._image_response(img_bio.getvalue(), mime_type, billing_info)
@property
def supported_addon_types(self):
return ['lora']
# Addon interface methods adjusted to remove ControlNet support
def load_addon(
self,
addon_account_id: str,
addon_model_id: str,
addon_type: str,
addon_data_path: os.PathLike,
):
if addon_type not in self.supported_addon_types:
raise ValueError(
f"Invalid addon type {addon_type}. Supported types: {self.supported_addon_types}"
)
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if addon_type == 'lora':
self.pipeline.load_lora_weights(addon_data_path, adapter_name=qualname)
self.lora_adapters.add(qualname)
else:
raise NotImplementedError(
f'Addon support for type {addon_type} not implemented'
)
def unload_addon(
self, addon_account_id: str, addon_model_id: str, addon_type: str
):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if addon_type == 'lora':
assert qualname in self.lora_adapters
self.pipeline.delete_adapters([qualname])
self.lora_adapters.remove(qualname)
else:
raise NotImplementedError(
f'Addon support for type {addon_type} not implemented'
)
def activate_addon(self, addon_account_id: str, addon_model_id: str):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if qualname in self.lora_adapters:
if self.active_lora_adapter is not None:
raise ValueError(
f"LoRA adapter {self.active_lora_adapter} already active. Multi-LoRA not yet supported"
)
self.active_lora_adapter = qualname
return
raise ValueError(f"Unknown addon {qualname}")
def deactivate_addon(self, addon_account_id: str, addon_model_id: str):
qualname = f"accounts/{addon_account_id}/models/{addon_model_id}"
if self.active_lora_adapter == qualname:
self.active_lora_adapter = None
else:
raise AssertionError(f'Addon {qualname} not loaded!')
if __name__ == "__flumina_main__":
f = FluminaModule()
flumina_main(f)
if __name__ == "__main__":
f = FluminaModule()
f._test_return_sync_response = True
import asyncio
out = asyncio.run(f.text_to_image(
body=Text2ImageRequest(
prompt="test",
aspect_ratio="4:3",
),
accept="*/*"
))
with open("out_image.png", "wb") as f:
f.write(out)