Add lora loading
Browse files- README.md +19 -0
- flux_pipeline.py +25 -7
- lora_loading.py +443 -0
README.md
CHANGED
@@ -54,6 +54,25 @@ Note:
|
|
54 |
|
55 |
**note:** prequantized flow models will only work with the specified quantization levels as when they were created. e.g. if you create a prequantized flow model with `quantize_modulation` set to false, it will only work with `quantize_modulation` set to false, same with `quantize_flow_embedder_layers`.
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
## Installation
|
58 |
|
59 |
This repo _requires_ at least pytorch with cuda=12.4 and an ADA gpu with fp8 support, otherwise `torch._scaled_mm` will throw a CUDA error saying it's not supported. To install with conda/mamba:
|
|
|
54 |
|
55 |
**note:** prequantized flow models will only work with the specified quantization levels as when they were created. e.g. if you create a prequantized flow model with `quantize_modulation` set to false, it will only work with `quantize_modulation` set to false, same with `quantize_flow_embedder_layers`.
|
56 |
|
57 |
+
### Updates 08/25/24
|
58 |
+
|
59 |
+
- Added LoRA loading functionality to FluxPipeline. Simple example:
|
60 |
+
|
61 |
+
```python
|
62 |
+
from flux_pipeline import FluxPipeline
|
63 |
+
|
64 |
+
config_path = "path/to/config/file.json"
|
65 |
+
config_overrides = {
|
66 |
+
#...
|
67 |
+
}
|
68 |
+
|
69 |
+
lora_path = "path/to/lora/file.safetensors"
|
70 |
+
|
71 |
+
pipeline = FluxPipeline.load_pipeline_from_config_path(config_path, **config_overrides)
|
72 |
+
|
73 |
+
pipeline.load_lora(lora_path, scale=1.0)
|
74 |
+
```
|
75 |
+
|
76 |
## Installation
|
77 |
|
78 |
This repo _requires_ at least pytorch with cuda=12.4 and an ADA gpu with fp8 support, otherwise `torch._scaled_mm` will throw a CUDA error saying it's not supported. To install with conda/mamba:
|
flux_pipeline.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
import io
|
2 |
import math
|
3 |
import random
|
|
|
4 |
from typing import TYPE_CHECKING, Callable, List
|
5 |
-
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
|
9 |
warnings.filterwarnings("ignore", category=UserWarning)
|
10 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
11 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
12 |
import torch
|
13 |
-
|
14 |
from einops import rearrange
|
|
|
15 |
from flux_emphasis import get_weighted_text_embeddings_flux
|
16 |
|
17 |
torch.backends.cuda.matmul.allow_tf32 = True
|
@@ -19,16 +20,20 @@ torch.backends.cudnn.allow_tf32 = True
|
|
19 |
torch.backends.cudnn.benchmark = True
|
20 |
torch.backends.cudnn.benchmark_limit = 20
|
21 |
torch.set_float32_matmul_precision("high")
|
|
|
22 |
from torch._dynamo import config
|
23 |
from torch._inductor import config as ind_config
|
24 |
-
from pybase64 import standard_b64decode
|
25 |
|
26 |
config.cache_size_limit = 10000000000
|
27 |
ind_config.shape_padding = True
|
|
|
|
|
28 |
from loguru import logger
|
29 |
-
from image_encoder import ImageEncoder
|
30 |
from torchvision.transforms import functional as TF
|
31 |
from tqdm import tqdm
|
|
|
|
|
|
|
32 |
from util import (
|
33 |
ModelSpec,
|
34 |
ModelVersion,
|
@@ -37,7 +42,6 @@ from util import (
|
|
37 |
load_config_from_path,
|
38 |
load_models_from_config,
|
39 |
)
|
40 |
-
import platform
|
41 |
|
42 |
if platform.system() == "Windows":
|
43 |
MAX_RAND = 2**16 - 1
|
@@ -46,9 +50,9 @@ else:
|
|
46 |
|
47 |
|
48 |
if TYPE_CHECKING:
|
|
|
49 |
from modules.conditioner import HFEmbedder
|
50 |
from modules.flux_model import Flux
|
51 |
-
from modules.autoencoder import AutoEncoder
|
52 |
|
53 |
|
54 |
class FluxPipeline:
|
@@ -144,6 +148,20 @@ class FluxPipeline:
|
|
144 |
random.seed(seed)
|
145 |
return cuda_generator, seed
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
@torch.inference_mode()
|
148 |
def compile(self):
|
149 |
"""
|
|
|
1 |
import io
|
2 |
import math
|
3 |
import random
|
4 |
+
import warnings
|
5 |
from typing import TYPE_CHECKING, Callable, List
|
6 |
+
|
7 |
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
|
10 |
warnings.filterwarnings("ignore", category=UserWarning)
|
11 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
12 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
13 |
import torch
|
|
|
14 |
from einops import rearrange
|
15 |
+
|
16 |
from flux_emphasis import get_weighted_text_embeddings_flux
|
17 |
|
18 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
20 |
torch.backends.cudnn.benchmark = True
|
21 |
torch.backends.cudnn.benchmark_limit = 20
|
22 |
torch.set_float32_matmul_precision("high")
|
23 |
+
from pybase64 import standard_b64decode
|
24 |
from torch._dynamo import config
|
25 |
from torch._inductor import config as ind_config
|
|
|
26 |
|
27 |
config.cache_size_limit = 10000000000
|
28 |
ind_config.shape_padding = True
|
29 |
+
import platform
|
30 |
+
|
31 |
from loguru import logger
|
|
|
32 |
from torchvision.transforms import functional as TF
|
33 |
from tqdm import tqdm
|
34 |
+
|
35 |
+
import lora_loading
|
36 |
+
from image_encoder import ImageEncoder
|
37 |
from util import (
|
38 |
ModelSpec,
|
39 |
ModelVersion,
|
|
|
42 |
load_config_from_path,
|
43 |
load_models_from_config,
|
44 |
)
|
|
|
45 |
|
46 |
if platform.system() == "Windows":
|
47 |
MAX_RAND = 2**16 - 1
|
|
|
50 |
|
51 |
|
52 |
if TYPE_CHECKING:
|
53 |
+
from modules.autoencoder import AutoEncoder
|
54 |
from modules.conditioner import HFEmbedder
|
55 |
from modules.flux_model import Flux
|
|
|
56 |
|
57 |
|
58 |
class FluxPipeline:
|
|
|
148 |
random.seed(seed)
|
149 |
return cuda_generator, seed
|
150 |
|
151 |
+
def load_lora(self, lora_path: str, scale: float):
|
152 |
+
"""
|
153 |
+
Loads a LoRA checkpoint into the Flux flow transformer.
|
154 |
+
|
155 |
+
Currently supports LoRA checkpoints from either diffusers checkpoints which usually start with transformer.[...],
|
156 |
+
or loras which contain keys which start with lora_unet_[...].
|
157 |
+
|
158 |
+
Args:
|
159 |
+
lora_path (str): Path to the LoRA checkpoint.
|
160 |
+
scale (float): Scaling factor for the LoRA weights.
|
161 |
+
|
162 |
+
"""
|
163 |
+
self.model = lora_loading.apply_lora_to_model(self.model, lora_path, scale)
|
164 |
+
|
165 |
@torch.inference_mode()
|
166 |
def compile(self):
|
167 |
"""
|
lora_loading.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from cublas_ops import CublasLinear
|
3 |
+
from loguru import logger
|
4 |
+
from safetensors.torch import load_file
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from float8_quantize import F8Linear
|
8 |
+
from modules.flux_model import Flux
|
9 |
+
|
10 |
+
|
11 |
+
def swap_scale_shift(weight):
|
12 |
+
scale, shift = weight.chunk(2, dim=0)
|
13 |
+
new_weight = torch.cat([shift, scale], dim=0)
|
14 |
+
return new_weight
|
15 |
+
|
16 |
+
|
17 |
+
def check_if_lora_exists(state_dict, lora_name):
|
18 |
+
subkey = lora_name.split(".lora_A")[0].split(".lora_B")[0].split(".weight")[0]
|
19 |
+
for key in state_dict.keys():
|
20 |
+
if subkey in key:
|
21 |
+
return subkey
|
22 |
+
return False
|
23 |
+
|
24 |
+
|
25 |
+
def convert_if_lora_exists(new_state_dict, state_dict, lora_name, flux_layer_name):
|
26 |
+
if (original_stubkey := check_if_lora_exists(state_dict, lora_name)) != False:
|
27 |
+
weights_to_pop = [k for k in state_dict.keys() if original_stubkey in k]
|
28 |
+
for key in weights_to_pop:
|
29 |
+
key_replacement = key.replace(
|
30 |
+
original_stubkey, flux_layer_name.replace(".weight", "")
|
31 |
+
)
|
32 |
+
new_state_dict[key_replacement] = state_dict.pop(key)
|
33 |
+
return new_state_dict, state_dict
|
34 |
+
else:
|
35 |
+
return new_state_dict, state_dict
|
36 |
+
|
37 |
+
|
38 |
+
def convert_diffusers_to_flux_transformer_checkpoint(
|
39 |
+
diffusers_state_dict,
|
40 |
+
num_layers,
|
41 |
+
num_single_layers,
|
42 |
+
has_guidance=True,
|
43 |
+
prefix="",
|
44 |
+
):
|
45 |
+
original_state_dict = {}
|
46 |
+
|
47 |
+
# time_text_embed.timestep_embedder -> time_in
|
48 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
49 |
+
original_state_dict,
|
50 |
+
diffusers_state_dict,
|
51 |
+
f"{prefix}time_text_embed.timestep_embedder.linear_1.weight",
|
52 |
+
"time_in.in_layer.weight",
|
53 |
+
)
|
54 |
+
# time_text_embed.text_embedder -> vector_in
|
55 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
56 |
+
original_state_dict,
|
57 |
+
diffusers_state_dict,
|
58 |
+
f"{prefix}time_text_embed.text_embedder.linear_1.weight",
|
59 |
+
"vector_in.in_layer.weight",
|
60 |
+
)
|
61 |
+
|
62 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
63 |
+
original_state_dict,
|
64 |
+
diffusers_state_dict,
|
65 |
+
f"{prefix}time_text_embed.text_embedder.linear_2.weight",
|
66 |
+
"vector_in.out_layer.weight",
|
67 |
+
)
|
68 |
+
|
69 |
+
if has_guidance:
|
70 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
71 |
+
original_state_dict,
|
72 |
+
diffusers_state_dict,
|
73 |
+
f"{prefix}time_text_embed.guidance_embedder.linear_1.weight",
|
74 |
+
"guidance_in.in_layer.weight",
|
75 |
+
)
|
76 |
+
|
77 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
78 |
+
original_state_dict,
|
79 |
+
diffusers_state_dict,
|
80 |
+
f"{prefix}time_text_embed.guidance_embedder.linear_2.weight",
|
81 |
+
"guidance_in.out_layer.weight",
|
82 |
+
)
|
83 |
+
|
84 |
+
# context_embedder -> txt_in
|
85 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
86 |
+
original_state_dict,
|
87 |
+
diffusers_state_dict,
|
88 |
+
f"{prefix}context_embedder.weight",
|
89 |
+
"txt_in.weight",
|
90 |
+
)
|
91 |
+
|
92 |
+
# x_embedder -> img_in
|
93 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
94 |
+
original_state_dict,
|
95 |
+
diffusers_state_dict,
|
96 |
+
f"{prefix}x_embedder.weight",
|
97 |
+
"img_in.weight",
|
98 |
+
)
|
99 |
+
# double transformer blocks
|
100 |
+
for i in range(num_layers):
|
101 |
+
block_prefix = f"transformer_blocks.{i}."
|
102 |
+
# norms
|
103 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
104 |
+
original_state_dict,
|
105 |
+
diffusers_state_dict,
|
106 |
+
f"{prefix}{block_prefix}norm1.linear.weight",
|
107 |
+
f"double_blocks.{i}.img_mod.lin.weight",
|
108 |
+
)
|
109 |
+
|
110 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
111 |
+
original_state_dict,
|
112 |
+
diffusers_state_dict,
|
113 |
+
f"{prefix}{block_prefix}norm1_context.linear.weight",
|
114 |
+
f"double_blocks.{i}.txt_mod.lin.weight",
|
115 |
+
)
|
116 |
+
|
117 |
+
sample_q_A = diffusers_state_dict.pop(
|
118 |
+
f"{prefix}{block_prefix}attn.to_q.lora_A.weight"
|
119 |
+
)
|
120 |
+
sample_q_B = diffusers_state_dict.pop(
|
121 |
+
f"{prefix}{block_prefix}attn.to_q.lora_B.weight"
|
122 |
+
)
|
123 |
+
|
124 |
+
sample_k_A = diffusers_state_dict.pop(
|
125 |
+
f"{prefix}{block_prefix}attn.to_k.lora_A.weight"
|
126 |
+
)
|
127 |
+
sample_k_B = diffusers_state_dict.pop(
|
128 |
+
f"{prefix}{block_prefix}attn.to_k.lora_B.weight"
|
129 |
+
)
|
130 |
+
|
131 |
+
sample_v_A = diffusers_state_dict.pop(
|
132 |
+
f"{prefix}{block_prefix}attn.to_v.lora_A.weight"
|
133 |
+
)
|
134 |
+
sample_v_B = diffusers_state_dict.pop(
|
135 |
+
f"{prefix}{block_prefix}attn.to_v.lora_B.weight"
|
136 |
+
)
|
137 |
+
|
138 |
+
context_q_A = diffusers_state_dict.pop(
|
139 |
+
f"{prefix}{block_prefix}attn.add_q_proj.lora_A.weight"
|
140 |
+
)
|
141 |
+
context_q_B = diffusers_state_dict.pop(
|
142 |
+
f"{prefix}{block_prefix}attn.add_q_proj.lora_B.weight"
|
143 |
+
)
|
144 |
+
|
145 |
+
context_k_A = diffusers_state_dict.pop(
|
146 |
+
f"{prefix}{block_prefix}attn.add_k_proj.lora_A.weight"
|
147 |
+
)
|
148 |
+
context_k_B = diffusers_state_dict.pop(
|
149 |
+
f"{prefix}{block_prefix}attn.add_k_proj.lora_B.weight"
|
150 |
+
)
|
151 |
+
context_v_A = diffusers_state_dict.pop(
|
152 |
+
f"{prefix}{block_prefix}attn.add_v_proj.lora_A.weight"
|
153 |
+
)
|
154 |
+
context_v_B = diffusers_state_dict.pop(
|
155 |
+
f"{prefix}{block_prefix}attn.add_v_proj.lora_B.weight"
|
156 |
+
)
|
157 |
+
|
158 |
+
original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_A.weight"] = (
|
159 |
+
torch.cat([sample_q_A, sample_k_A, sample_v_A], dim=0)
|
160 |
+
)
|
161 |
+
original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_B.weight"] = (
|
162 |
+
torch.cat([sample_q_B, sample_k_B, sample_v_B], dim=0)
|
163 |
+
)
|
164 |
+
original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_A.weight"] = (
|
165 |
+
torch.cat([context_q_A, context_k_A, context_v_A], dim=0)
|
166 |
+
)
|
167 |
+
original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_B.weight"] = (
|
168 |
+
torch.cat([context_q_B, context_k_B, context_v_B], dim=0)
|
169 |
+
)
|
170 |
+
|
171 |
+
# qk_norm
|
172 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
173 |
+
original_state_dict,
|
174 |
+
diffusers_state_dict,
|
175 |
+
f"{prefix}{block_prefix}attn.norm_q.weight",
|
176 |
+
f"double_blocks.{i}.img_attn.norm.query_norm.scale",
|
177 |
+
)
|
178 |
+
|
179 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
180 |
+
original_state_dict,
|
181 |
+
diffusers_state_dict,
|
182 |
+
f"{prefix}{block_prefix}attn.norm_k.weight",
|
183 |
+
f"double_blocks.{i}.img_attn.norm.key_norm.scale",
|
184 |
+
)
|
185 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
186 |
+
original_state_dict,
|
187 |
+
diffusers_state_dict,
|
188 |
+
f"{prefix}{block_prefix}attn.norm_added_q.weight",
|
189 |
+
f"double_blocks.{i}.txt_attn.norm.query_norm.scale",
|
190 |
+
)
|
191 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
192 |
+
original_state_dict,
|
193 |
+
diffusers_state_dict,
|
194 |
+
f"{prefix}{block_prefix}attn.norm_added_k.weight",
|
195 |
+
f"double_blocks.{i}.txt_attn.norm.key_norm.scale",
|
196 |
+
)
|
197 |
+
|
198 |
+
# ff img_mlp
|
199 |
+
|
200 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
201 |
+
original_state_dict,
|
202 |
+
diffusers_state_dict,
|
203 |
+
f"{prefix}{block_prefix}ff.net.0.proj.weight",
|
204 |
+
f"double_blocks.{i}.img_mlp.0.weight",
|
205 |
+
)
|
206 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
207 |
+
original_state_dict,
|
208 |
+
diffusers_state_dict,
|
209 |
+
f"{prefix}{block_prefix}ff.net.2.weight",
|
210 |
+
f"double_blocks.{i}.img_mlp.2.weight",
|
211 |
+
)
|
212 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
213 |
+
original_state_dict,
|
214 |
+
diffusers_state_dict,
|
215 |
+
f"{prefix}{block_prefix}ff_context.net.0.proj.weight",
|
216 |
+
f"double_blocks.{i}.txt_mlp.0.weight",
|
217 |
+
)
|
218 |
+
|
219 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
220 |
+
original_state_dict,
|
221 |
+
diffusers_state_dict,
|
222 |
+
f"{prefix}{block_prefix}ff_context.net.2.weight",
|
223 |
+
f"double_blocks.{i}.txt_mlp.2.weight",
|
224 |
+
)
|
225 |
+
# output projections
|
226 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
227 |
+
original_state_dict,
|
228 |
+
diffusers_state_dict,
|
229 |
+
f"{prefix}{block_prefix}attn.to_out.0.weight",
|
230 |
+
f"double_blocks.{i}.img_attn.proj.weight",
|
231 |
+
)
|
232 |
+
|
233 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
234 |
+
original_state_dict,
|
235 |
+
diffusers_state_dict,
|
236 |
+
f"{prefix}{block_prefix}attn.to_add_out.weight",
|
237 |
+
f"double_blocks.{i}.txt_attn.proj.weight",
|
238 |
+
)
|
239 |
+
|
240 |
+
# single transformer blocks
|
241 |
+
for i in range(num_single_layers):
|
242 |
+
block_prefix = f"single_transformer_blocks.{i}."
|
243 |
+
# norm.linear -> single_blocks.0.modulation.lin
|
244 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
245 |
+
original_state_dict,
|
246 |
+
diffusers_state_dict,
|
247 |
+
f"{prefix}{block_prefix}norm.linear.weight",
|
248 |
+
f"single_blocks.{i}.modulation.lin.weight",
|
249 |
+
)
|
250 |
+
|
251 |
+
# Q, K, V, mlp
|
252 |
+
q_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_A.weight")
|
253 |
+
q_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_B.weight")
|
254 |
+
k_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_A.weight")
|
255 |
+
k_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_B.weight")
|
256 |
+
v_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_A.weight")
|
257 |
+
v_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_B.weight")
|
258 |
+
mlp_A = diffusers_state_dict.pop(
|
259 |
+
f"{prefix}{block_prefix}proj_mlp.lora_A.weight"
|
260 |
+
)
|
261 |
+
mlp_B = diffusers_state_dict.pop(
|
262 |
+
f"{prefix}{block_prefix}proj_mlp.lora_B.weight"
|
263 |
+
)
|
264 |
+
original_state_dict[f"single_blocks.{i}.linear1.lora_A.weight"] = torch.cat(
|
265 |
+
[q_A, k_A, v_A, mlp_A], dim=0
|
266 |
+
)
|
267 |
+
original_state_dict[f"single_blocks.{i}.linear1.lora_B.weight"] = torch.cat(
|
268 |
+
[q_B, k_B, v_B, mlp_B], dim=0
|
269 |
+
)
|
270 |
+
|
271 |
+
# output projections
|
272 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
273 |
+
original_state_dict,
|
274 |
+
diffusers_state_dict,
|
275 |
+
f"{prefix}{block_prefix}proj_out.weight",
|
276 |
+
f"single_blocks.{i}.linear2.weight",
|
277 |
+
)
|
278 |
+
|
279 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
280 |
+
original_state_dict,
|
281 |
+
diffusers_state_dict,
|
282 |
+
f"{prefix}proj_out.weight",
|
283 |
+
"final_layer.linear.weight",
|
284 |
+
)
|
285 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
286 |
+
original_state_dict,
|
287 |
+
diffusers_state_dict,
|
288 |
+
f"{prefix}proj_out.bias",
|
289 |
+
"final_layer.linear.bias",
|
290 |
+
)
|
291 |
+
original_state_dict, diffusers_state_dict = convert_if_lora_exists(
|
292 |
+
original_state_dict,
|
293 |
+
diffusers_state_dict,
|
294 |
+
f"{prefix}norm_out.linear.weight",
|
295 |
+
"final_layer.adaLN_modulation.1.weight",
|
296 |
+
)
|
297 |
+
if len(list(diffusers_state_dict.keys())) > 0:
|
298 |
+
logger.warning("Unexpected keys:", diffusers_state_dict.keys())
|
299 |
+
|
300 |
+
return original_state_dict
|
301 |
+
|
302 |
+
|
303 |
+
def convert_from_original_flux_checkpoint(
|
304 |
+
original_state_dict,
|
305 |
+
):
|
306 |
+
sd = {
|
307 |
+
k.replace("lora_unet_", "")
|
308 |
+
.replace("double_blocks_", "double_blocks.")
|
309 |
+
.replace("single_blocks_", "single_blocks.")
|
310 |
+
.replace("_img_attn_", ".img_attn.")
|
311 |
+
.replace("_txt_attn_", ".txt_attn.")
|
312 |
+
.replace("_img_mod_", ".img_mod.")
|
313 |
+
.replace("_txt_mod_", ".txt_mod.")
|
314 |
+
.replace("_img_mlp_", ".img_mlp.")
|
315 |
+
.replace("_txt_mlp_", ".txt_mlp.")
|
316 |
+
.replace("_linear1", ".linear1")
|
317 |
+
.replace("_linear2", ".linear2")
|
318 |
+
.replace("_modulation_", ".modulation.")
|
319 |
+
.replace("lora_up", "lora_B")
|
320 |
+
.replace("lora_down", "lora_A"): v
|
321 |
+
for k, v in original_state_dict.items()
|
322 |
+
if "lora" in k
|
323 |
+
}
|
324 |
+
return sd
|
325 |
+
|
326 |
+
|
327 |
+
def get_module_for_key(
|
328 |
+
key: str, model: Flux
|
329 |
+
) -> F8Linear | torch.nn.Linear | CublasLinear:
|
330 |
+
parts = key.split(".")
|
331 |
+
module = model
|
332 |
+
for part in parts:
|
333 |
+
module = getattr(module, part)
|
334 |
+
return module
|
335 |
+
|
336 |
+
|
337 |
+
def get_lora_for_key(key: str, lora_weights: dict):
|
338 |
+
prefix = key.split(".lora")[0]
|
339 |
+
lora_A = lora_weights[f"{prefix}.lora_A.weight"]
|
340 |
+
lora_B = lora_weights[f"{prefix}.lora_B.weight"]
|
341 |
+
alpha = lora_weights.get(f"{prefix}.alpha", 1.0)
|
342 |
+
return lora_A, lora_B, alpha
|
343 |
+
|
344 |
+
|
345 |
+
@torch.inference_mode()
|
346 |
+
def apply_lora_weight_to_module(
|
347 |
+
module_weight: torch.Tensor,
|
348 |
+
lora_weights: dict,
|
349 |
+
rank: int = None,
|
350 |
+
lora_scale: float = 1.0,
|
351 |
+
):
|
352 |
+
lora_A, lora_B, alpha = lora_weights
|
353 |
+
|
354 |
+
uneven_rank = lora_B.shape[1] != lora_A.shape[0]
|
355 |
+
rank_diff = lora_A.shape[0] / lora_B.shape[1]
|
356 |
+
|
357 |
+
if rank is None:
|
358 |
+
rank = lora_B.shape[1]
|
359 |
+
else:
|
360 |
+
rank = rank
|
361 |
+
if alpha is None:
|
362 |
+
alpha = rank
|
363 |
+
else:
|
364 |
+
alpha = alpha
|
365 |
+
w_dtype = module_weight.dtype
|
366 |
+
dtype = torch.float32
|
367 |
+
device = module_weight.device
|
368 |
+
w_orig = module_weight.to(dtype=dtype, device=device)
|
369 |
+
w_up = lora_A.to(dtype=dtype, device=device)
|
370 |
+
w_down = lora_B.to(dtype=dtype, device=device)
|
371 |
+
|
372 |
+
# if not from_original_flux:
|
373 |
+
if alpha != rank:
|
374 |
+
w_up = w_up * alpha / rank
|
375 |
+
if uneven_rank:
|
376 |
+
fused_lora = lora_scale * torch.mm(
|
377 |
+
w_down.repeat_interleave(int(rank_diff), dim=1), w_up
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
fused_lora = lora_scale * torch.mm(w_down, w_up)
|
381 |
+
fused_weight = w_orig + fused_lora
|
382 |
+
return fused_weight.to(dtype=w_dtype, device=device)
|
383 |
+
|
384 |
+
|
385 |
+
@torch.inference_mode()
|
386 |
+
def apply_lora_to_model(model: Flux, lora_path: str, lora_scale: float = 1.0):
|
387 |
+
has_guidance = model.params.guidance_embed
|
388 |
+
logger.info(f"Loading LoRA weights for {lora_path}")
|
389 |
+
lora_weights = load_file(lora_path)
|
390 |
+
from_original_flux = False
|
391 |
+
check_if_starts_with_transformer = [
|
392 |
+
k for k in lora_weights.keys() if k.startswith("transformer.")
|
393 |
+
]
|
394 |
+
if len(check_if_starts_with_transformer) > 0:
|
395 |
+
lora_weights = convert_diffusers_to_flux_transformer_checkpoint(
|
396 |
+
lora_weights, 19, 38, has_guidance=has_guidance, prefix="transformer."
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
from_original_flux = True
|
400 |
+
lora_weights = convert_from_original_flux_checkpoint(lora_weights)
|
401 |
+
logger.info("LoRA weights loaded")
|
402 |
+
logger.debug("Extracting keys")
|
403 |
+
keys_without_ab = [
|
404 |
+
key.replace(".lora_A.weight", "")
|
405 |
+
.replace(".lora_B.weight", "")
|
406 |
+
.replace(".alpha", "")
|
407 |
+
for key in lora_weights.keys()
|
408 |
+
]
|
409 |
+
logger.debug("Keys extracted")
|
410 |
+
keys_without_ab = list(set(keys_without_ab))
|
411 |
+
if len(keys_without_ab) > 0:
|
412 |
+
logger.warning("Missing unconverted state dict keys!", len(keys_without_ab))
|
413 |
+
|
414 |
+
for key in tqdm(keys_without_ab, desc="Applying LoRA", total=len(keys_without_ab)):
|
415 |
+
module = get_module_for_key(key, model)
|
416 |
+
dtype = model.dtype
|
417 |
+
weight_is_f8 = False
|
418 |
+
if isinstance(module, F8Linear):
|
419 |
+
weight_is_f8 = True
|
420 |
+
weight_f16 = (
|
421 |
+
module.float8_data.clone()
|
422 |
+
.detach()
|
423 |
+
.float()
|
424 |
+
.mul(module.scale_reciprocal)
|
425 |
+
.to(module.weight.device)
|
426 |
+
)
|
427 |
+
elif isinstance(module, torch.nn.Linear):
|
428 |
+
weight_f16 = module.weight.clone().detach().float()
|
429 |
+
elif isinstance(module, CublasLinear):
|
430 |
+
weight_f16 = module.weight.clone().detach().float()
|
431 |
+
lora_sd = get_lora_for_key(key, lora_weights)
|
432 |
+
weight_f16 = apply_lora_weight_to_module(
|
433 |
+
weight_f16,
|
434 |
+
lora_sd,
|
435 |
+
lora_scale=lora_scale,
|
436 |
+
from_original_flux=from_original_flux,
|
437 |
+
)
|
438 |
+
if weight_is_f8:
|
439 |
+
module.set_weight_tensor(weight_f16.type(dtype))
|
440 |
+
else:
|
441 |
+
module.weight.data = weight_f16.type(dtype)
|
442 |
+
logger.success("Lora applied")
|
443 |
+
return model
|