aredden
commited on
Commit
·
d9aea20
0
Parent(s):
initial commit
Browse files- .gitignore +1 -0
- README.md +267 -0
- api.py +25 -0
- configs/config-dev-cuda0.json +51 -0
- configs/config-dev.json +51 -0
- configs/config-schnell-cuda0.json +51 -0
- configs/config-schnell.json +51 -0
- cublas_linear.py +152 -0
- flux_impl.py +272 -0
- main.py +89 -0
- modules/autoencoder.py +336 -0
- modules/conditioner.py +53 -0
- modules/flux_model.py +492 -0
- requirements.txt +12 -0
- sampling.py +152 -0
- turbojpeg_imgs.py +134 -0
- util.py +275 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
README.md
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Sure, here's a draft for your README:
|
2 |
+
|
3 |
+
````markdown
|
4 |
+
# Flux FP16 Accumulate Model Implementation with FastAPI
|
5 |
+
|
6 |
+
This repository contains an implementation of the Flux model, along with an API that allows you to generate images based on text prompts. The API can be run via command-line arguments.
|
7 |
+
|
8 |
+
## Table of Contents
|
9 |
+
|
10 |
+
- [Installation](#installation)
|
11 |
+
- [Usage](#usage)
|
12 |
+
- [Configuration](#configuration)
|
13 |
+
- [API Endpoints](#api-endpoints)
|
14 |
+
- [Examples](#examples)
|
15 |
+
- [License](#license)
|
16 |
+
|
17 |
+
## Installation
|
18 |
+
|
19 |
+
To install the required dependencies, run:
|
20 |
+
|
21 |
+
```bash
|
22 |
+
pip install -r requirements.txt
|
23 |
+
```
|
24 |
+
````
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
You can run the API server using the following command:
|
29 |
+
|
30 |
+
```bash
|
31 |
+
python main.py --config-path <path_to_config> --port <port_number> --host <host_address>
|
32 |
+
```
|
33 |
+
|
34 |
+
### Command-Line Arguments
|
35 |
+
|
36 |
+
- `--config-path`: Path to the configuration file. If not provided, the model will be loaded from the command line arguments.
|
37 |
+
- `--port`: Port to run the server on (default: 8088).
|
38 |
+
- `--host`: Host to run the server on (default: 0.0.0.0).
|
39 |
+
- `--flow-model-path`: Path to the flow model.
|
40 |
+
- `--text-enc-path`: Path to the text encoder.
|
41 |
+
- `--autoencoder-path`: Path to the autoencoder.
|
42 |
+
- `--model-version`: Choose model version (`flux-dev` or `flux-schnell`).
|
43 |
+
- `--flux-device`: Device to run the flow model on (default: cuda:0).
|
44 |
+
- `--text-enc-device`: Device to run the text encoder on (default: cuda:0).
|
45 |
+
- `--autoencoder-device`: Device to run the autoencoder on (default: cuda:0).
|
46 |
+
- `--num-to-quant`: Number of linear layers in the flow transformer to quantize (default: 20).
|
47 |
+
|
48 |
+
## Configuration
|
49 |
+
|
50 |
+
The configuration files are located in the `configs` directory. You can specify different configurations for different model versions and devices.
|
51 |
+
|
52 |
+
Example configuration file (`configs/config-dev.json`):
|
53 |
+
|
54 |
+
```json
|
55 |
+
{
|
56 |
+
"version": "flux-dev",
|
57 |
+
"params": {
|
58 |
+
"in_channels": 64,
|
59 |
+
"vec_in_dim": 768,
|
60 |
+
"context_in_dim": 4096,
|
61 |
+
"hidden_size": 3072,
|
62 |
+
"mlp_ratio": 4.0,
|
63 |
+
"num_heads": 24,
|
64 |
+
"depth": 19,
|
65 |
+
"depth_single_blocks": 38,
|
66 |
+
"axes_dim": [16, 56, 56],
|
67 |
+
"theta": 10000,
|
68 |
+
"qkv_bias": true,
|
69 |
+
"guidance_embed": true
|
70 |
+
},
|
71 |
+
"ae_params": {
|
72 |
+
"resolution": 256,
|
73 |
+
"in_channels": 3,
|
74 |
+
"ch": 128,
|
75 |
+
"out_ch": 3,
|
76 |
+
"ch_mult": [1, 2, 4, 4],
|
77 |
+
"num_res_blocks": 2,
|
78 |
+
"z_channels": 16,
|
79 |
+
"scale_factor": 0.3611,
|
80 |
+
"shift_factor": 0.1159
|
81 |
+
},
|
82 |
+
"ckpt_path": "/path/to/your/flux1-dev.sft",
|
83 |
+
"ae_path": "/path/to/your/ae.sft",
|
84 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
85 |
+
"repo_flow": "flux1-dev.sft",
|
86 |
+
"repo_ae": "ae.sft",
|
87 |
+
"text_enc_max_length": 512,
|
88 |
+
"text_enc_path": "path/to/your/t5-v1_1-xxl-encoder-bf16", // or "city96/t5-v1_1-xxl-encoder-bf16" for a simple to download version
|
89 |
+
"text_enc_device": "cuda:1",
|
90 |
+
"ae_device": "cuda:1",
|
91 |
+
"flux_device": "cuda:0",
|
92 |
+
"flow_dtype": "float16",
|
93 |
+
"ae_dtype": "bfloat16",
|
94 |
+
"text_enc_dtype": "bfloat16",
|
95 |
+
"num_to_quant": 20
|
96 |
+
}
|
97 |
+
```
|
98 |
+
|
99 |
+
## API Endpoints
|
100 |
+
|
101 |
+
### Generate Image
|
102 |
+
|
103 |
+
- **URL**: `/generate`
|
104 |
+
- **Method**: `POST`
|
105 |
+
- **Request Body**:
|
106 |
+
|
107 |
+
- `prompt` (str): The text prompt for image generation.
|
108 |
+
- `width` (int, optional): The width of the generated image (default: 720).
|
109 |
+
- `height` (int, optional): The height of the generated image (default: 1024).
|
110 |
+
- `num_steps` (int, optional): The number of steps for the generation process (default: 24).
|
111 |
+
- `guidance` (float, optional): The guidance scale for the generation process (default: 3.5).
|
112 |
+
- `seed` (int, optional): The seed for random number generation.
|
113 |
+
|
114 |
+
- **Response**: A JPEG image stream.
|
115 |
+
|
116 |
+
## Examples
|
117 |
+
|
118 |
+
### Running the Server
|
119 |
+
|
120 |
+
```bash
|
121 |
+
python main.py --config-path configs/config-dev.json --port 8088 --host 0.0.0.0
|
122 |
+
```
|
123 |
+
|
124 |
+
OR, if you need more granular control over the server, you can run the server with something like this:
|
125 |
+
|
126 |
+
```bash
|
127 |
+
python main.py --port 8088 --host 0.0.0.0 \
|
128 |
+
--flow-model-path /path/to/your/flux1-dev.sft \
|
129 |
+
--text-enc-path /path/to/your/t5-v1_1-xxl-encoder-bf16 \
|
130 |
+
--autoencoder-path /path/to/your/ae.sft \
|
131 |
+
--model-version flux-dev \
|
132 |
+
--flux-device cuda:0 \
|
133 |
+
--text-enc-device cuda:1 \
|
134 |
+
--autoencoder-device cuda:1 \
|
135 |
+
--num-to-quant 20
|
136 |
+
```
|
137 |
+
|
138 |
+
### Generating an Image
|
139 |
+
|
140 |
+
Send a POST request to `http://<host>:<port>/generate` with the following JSON body:
|
141 |
+
|
142 |
+
```json
|
143 |
+
{
|
144 |
+
"prompt": "a beautiful asian woman in traditional clothing with golden hairpin and blue eyes, wearing a red kimono with dragon patterns",
|
145 |
+
"width": 1024,
|
146 |
+
"height": 1024,
|
147 |
+
"num_steps": 24,
|
148 |
+
"guidance": 3.0,
|
149 |
+
"seed": 13456
|
150 |
+
}
|
151 |
+
```
|
152 |
+
|
153 |
+
For an example of how to generate from a python client using the FastAPI server:
|
154 |
+
|
155 |
+
```py
|
156 |
+
import requests
|
157 |
+
import io
|
158 |
+
|
159 |
+
prompt = "a beautiful asian woman in traditional clothing with golden hairpin and blue eyes, wearing a red kimono with dragon patterns"
|
160 |
+
res = requests.post(
|
161 |
+
"http://localhost:8088/generate",
|
162 |
+
json={
|
163 |
+
"width": 1024,
|
164 |
+
"height": 720,
|
165 |
+
"num_steps": 20,
|
166 |
+
"guidance": 4,
|
167 |
+
"prompt": prompt,
|
168 |
+
},
|
169 |
+
stream=True,
|
170 |
+
)
|
171 |
+
|
172 |
+
with open(f"output.jpg", "wb") as f:
|
173 |
+
f.write(io.BytesIO(res.content).read())
|
174 |
+
|
175 |
+
```
|
176 |
+
|
177 |
+
## License
|
178 |
+
|
179 |
+
This project is licensed under the MIT License.
|
180 |
+
|
181 |
+
````
|
182 |
+
|
183 |
+
## References
|
184 |
+
|
185 |
+
- Code for loading the pipeline from the configuration path:
|
186 |
+
|
187 |
+
```200:310:flux_impl.py
|
188 |
+
@torch.inference_mode()
|
189 |
+
def load_pipeline_from_config(config: ModelSpec) -> Model:
|
190 |
+
models = load_models_from_config(config)
|
191 |
+
config = models.config
|
192 |
+
num_quanted = 0
|
193 |
+
max_quanted = config.num_to_quant
|
194 |
+
flux_device = into_device(config.flux_device)
|
195 |
+
ae_device = into_device(config.ae_device)
|
196 |
+
clip_device = into_device(config.text_enc_device)
|
197 |
+
t5_device = into_device(config.text_enc_device)
|
198 |
+
flux_dtype = into_dtype(config.flow_dtype)
|
199 |
+
device_index = flux_device.index or 0
|
200 |
+
flow_model = models.flow.requires_grad_(False).eval().type(flux_dtype)
|
201 |
+
for block in flow_model.single_blocks:
|
202 |
+
block.cuda(flux_device)
|
203 |
+
if num_quanted < max_quanted:
|
204 |
+
num_quanted = quant_module(
|
205 |
+
block.linear1, num_quanted, device_index=device_index
|
206 |
+
)
|
207 |
+
|
208 |
+
for block in flow_model.double_blocks:
|
209 |
+
block.cuda(flux_device)
|
210 |
+
if num_quanted < max_quanted:
|
211 |
+
num_quanted = full_quant(
|
212 |
+
block, max_quanted, num_quanted, device_index=device_index
|
213 |
+
)
|
214 |
+
|
215 |
+
to_gpu_extras = [
|
216 |
+
"vector_in",
|
217 |
+
"img_in",
|
218 |
+
"txt_in",
|
219 |
+
"time_in",
|
220 |
+
"guidance_in",
|
221 |
+
"final_layer",
|
222 |
+
"pe_embedder",
|
223 |
+
]
|
224 |
+
for extra in to_gpu_extras:
|
225 |
+
getattr(flow_model, extra).cuda(flux_device).type(flux_dtype)
|
226 |
+
````
|
227 |
+
|
228 |
+
- Code for the main entry point:
|
229 |
+
|
230 |
+
```59:85:main.py
|
231 |
+
def main():
|
232 |
+
args = parse_args()
|
233 |
+
|
234 |
+
if args.config_path:
|
235 |
+
app.state.model = load_pipeline_from_config_path(args.config_path)
|
236 |
+
else:
|
237 |
+
model_version = (
|
238 |
+
ModelVersion.flux_dev
|
239 |
+
if args.model_version == "flux-dev"
|
240 |
+
else ModelVersion.flux_schnell
|
241 |
+
)
|
242 |
+
config = load_config(
|
243 |
+
model_version,
|
244 |
+
flux_path=args.flow_model_path,
|
245 |
+
flux_device=args.flux_device,
|
246 |
+
ae_path=args.autoencoder_path,
|
247 |
+
ae_device=args.autoencoder_device,
|
248 |
+
text_enc_path=args.text_enc_path,
|
249 |
+
text_enc_device=args.text_enc_device,
|
250 |
+
flow_dtype="float16",
|
251 |
+
text_enc_dtype="bfloat16",
|
252 |
+
ae_dtype="bfloat16",
|
253 |
+
num_to_quant=args.num_to_quant,
|
254 |
+
)
|
255 |
+
app.state.model = load_pipeline_from_config(config)
|
256 |
+
|
257 |
+
uvicorn.run(app, host=args.host, port=args.port)
|
258 |
+
```
|
259 |
+
|
260 |
+
- Code for the API endpoint:
|
261 |
+
|
262 |
+
```22:25:api.py
|
263 |
+
@app.post("/generate")
|
264 |
+
def generate(args: GenerateArgs):
|
265 |
+
result = app.state.model.generate(**args.model_dump())
|
266 |
+
return StreamingResponse(result, media_type="image/jpeg")
|
267 |
+
```
|
api.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from fastapi import FastAPI
|
5 |
+
from fastapi.responses import StreamingResponse
|
6 |
+
from pydantic import BaseModel, Field
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
|
11 |
+
class GenerateArgs(BaseModel):
|
12 |
+
prompt: str
|
13 |
+
width: Optional[int] = Field(default=720)
|
14 |
+
height: Optional[int] = Field(default=1024)
|
15 |
+
num_steps: Optional[int] = Field(default=24)
|
16 |
+
guidance: Optional[float] = Field(default=3.5)
|
17 |
+
seed: Optional[int] = Field(
|
18 |
+
default_factory=lambda: np.random.randint(0, 2**32 - 1), gt=0, lt=2**32 - 1
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
@app.post("/generate")
|
23 |
+
def generate(args: GenerateArgs):
|
24 |
+
result = app.state.model.generate(**args.model_dump())
|
25 |
+
return StreamingResponse(result, media_type="image/jpeg")
|
configs/config-dev-cuda0.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "flux-dev",
|
3 |
+
"params": {
|
4 |
+
"in_channels": 64,
|
5 |
+
"vec_in_dim": 768,
|
6 |
+
"context_in_dim": 4096,
|
7 |
+
"hidden_size": 3072,
|
8 |
+
"mlp_ratio": 4.0,
|
9 |
+
"num_heads": 24,
|
10 |
+
"depth": 19,
|
11 |
+
"depth_single_blocks": 38,
|
12 |
+
"axes_dim": [
|
13 |
+
16,
|
14 |
+
56,
|
15 |
+
56
|
16 |
+
],
|
17 |
+
"theta": 10000,
|
18 |
+
"qkv_bias": true,
|
19 |
+
"guidance_embed": true
|
20 |
+
},
|
21 |
+
"ae_params": {
|
22 |
+
"resolution": 256,
|
23 |
+
"in_channels": 3,
|
24 |
+
"ch": 128,
|
25 |
+
"out_ch": 3,
|
26 |
+
"ch_mult": [
|
27 |
+
1,
|
28 |
+
2,
|
29 |
+
4,
|
30 |
+
4
|
31 |
+
],
|
32 |
+
"num_res_blocks": 2,
|
33 |
+
"z_channels": 16,
|
34 |
+
"scale_factor": 0.3611,
|
35 |
+
"shift_factor": 0.1159
|
36 |
+
},
|
37 |
+
"ckpt_path": "/big/generator-ui/flux-testing/flux/model-dir/flux1-dev.sft",
|
38 |
+
"ae_path": "/big/generator-ui/flux-testing/flux/model-dir/ae.sft",
|
39 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
40 |
+
"repo_flow": "flux1-dev.sft",
|
41 |
+
"repo_ae": "ae.sft",
|
42 |
+
"text_enc_max_length": 512,
|
43 |
+
"text_enc_path": "city96/t5-v1_1-xxl-encoder-bf16",
|
44 |
+
"text_enc_device": "cuda:0",
|
45 |
+
"ae_device": "cuda:0",
|
46 |
+
"flux_device": "cuda:0",
|
47 |
+
"flow_dtype": "float16",
|
48 |
+
"ae_dtype": "bfloat16",
|
49 |
+
"text_enc_dtype": "bfloat16",
|
50 |
+
"num_to_quant": 20
|
51 |
+
}
|
configs/config-dev.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "flux-dev",
|
3 |
+
"params": {
|
4 |
+
"in_channels": 64,
|
5 |
+
"vec_in_dim": 768,
|
6 |
+
"context_in_dim": 4096,
|
7 |
+
"hidden_size": 3072,
|
8 |
+
"mlp_ratio": 4.0,
|
9 |
+
"num_heads": 24,
|
10 |
+
"depth": 19,
|
11 |
+
"depth_single_blocks": 38,
|
12 |
+
"axes_dim": [
|
13 |
+
16,
|
14 |
+
56,
|
15 |
+
56
|
16 |
+
],
|
17 |
+
"theta": 10000,
|
18 |
+
"qkv_bias": true,
|
19 |
+
"guidance_embed": true
|
20 |
+
},
|
21 |
+
"ae_params": {
|
22 |
+
"resolution": 256,
|
23 |
+
"in_channels": 3,
|
24 |
+
"ch": 128,
|
25 |
+
"out_ch": 3,
|
26 |
+
"ch_mult": [
|
27 |
+
1,
|
28 |
+
2,
|
29 |
+
4,
|
30 |
+
4
|
31 |
+
],
|
32 |
+
"num_res_blocks": 2,
|
33 |
+
"z_channels": 16,
|
34 |
+
"scale_factor": 0.3611,
|
35 |
+
"shift_factor": 0.1159
|
36 |
+
},
|
37 |
+
"ckpt_path": "/big/generator-ui/flux-testing/flux/model-dir/flux1-dev.sft",
|
38 |
+
"ae_path": "/big/generator-ui/flux-testing/flux/model-dir/ae.sft",
|
39 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
40 |
+
"repo_flow": "flux1-dev.sft",
|
41 |
+
"repo_ae": "ae.sft",
|
42 |
+
"text_enc_max_length": 512,
|
43 |
+
"text_enc_path": "city96/t5-v1_1-xxl-encoder-bf16",
|
44 |
+
"text_enc_device": "cuda:1",
|
45 |
+
"ae_device": "cuda:1",
|
46 |
+
"flux_device": "cuda:0",
|
47 |
+
"flow_dtype": "float16",
|
48 |
+
"ae_dtype": "bfloat16",
|
49 |
+
"text_enc_dtype": "bfloat16",
|
50 |
+
"num_to_quant": 20
|
51 |
+
}
|
configs/config-schnell-cuda0.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "flux-schnell",
|
3 |
+
"params": {
|
4 |
+
"in_channels": 64,
|
5 |
+
"vec_in_dim": 768,
|
6 |
+
"context_in_dim": 4096,
|
7 |
+
"hidden_size": 3072,
|
8 |
+
"mlp_ratio": 4.0,
|
9 |
+
"num_heads": 24,
|
10 |
+
"depth": 19,
|
11 |
+
"depth_single_blocks": 38,
|
12 |
+
"axes_dim": [
|
13 |
+
16,
|
14 |
+
56,
|
15 |
+
56
|
16 |
+
],
|
17 |
+
"theta": 10000,
|
18 |
+
"qkv_bias": true,
|
19 |
+
"guidance_embed": true
|
20 |
+
},
|
21 |
+
"ae_params": {
|
22 |
+
"resolution": 256,
|
23 |
+
"in_channels": 3,
|
24 |
+
"ch": 128,
|
25 |
+
"out_ch": 3,
|
26 |
+
"ch_mult": [
|
27 |
+
1,
|
28 |
+
2,
|
29 |
+
4,
|
30 |
+
4
|
31 |
+
],
|
32 |
+
"num_res_blocks": 2,
|
33 |
+
"z_channels": 16,
|
34 |
+
"scale_factor": 0.3611,
|
35 |
+
"shift_factor": 0.1159
|
36 |
+
},
|
37 |
+
"ckpt_path": "/big/generator-ui/flux-testing/flux/model-dir-schnell/flux1-schnell.sft",
|
38 |
+
"ae_path": "/big/generator-ui/flux-testing/flux/model-dir-schnell/ae.sft",
|
39 |
+
"repo_id": "black-forest-labs/FLUX.1-schnell",
|
40 |
+
"repo_flow": "flux1-schnell.sft",
|
41 |
+
"repo_ae": "ae.sft",
|
42 |
+
"text_enc_max_length": 256,
|
43 |
+
"text_enc_path": "city96/t5-v1_1-xxl-encoder-bf16",
|
44 |
+
"text_enc_device": "cuda:0",
|
45 |
+
"ae_device": "cuda:0",
|
46 |
+
"flux_device": "cuda:0",
|
47 |
+
"flow_dtype": "float16",
|
48 |
+
"ae_dtype": "bfloat16",
|
49 |
+
"text_enc_dtype": "bfloat16",
|
50 |
+
"num_to_quant": 20
|
51 |
+
}
|
configs/config-schnell.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "flux-schnell",
|
3 |
+
"params": {
|
4 |
+
"in_channels": 64,
|
5 |
+
"vec_in_dim": 768,
|
6 |
+
"context_in_dim": 4096,
|
7 |
+
"hidden_size": 3072,
|
8 |
+
"mlp_ratio": 4.0,
|
9 |
+
"num_heads": 24,
|
10 |
+
"depth": 19,
|
11 |
+
"depth_single_blocks": 38,
|
12 |
+
"axes_dim": [
|
13 |
+
16,
|
14 |
+
56,
|
15 |
+
56
|
16 |
+
],
|
17 |
+
"theta": 10000,
|
18 |
+
"qkv_bias": true,
|
19 |
+
"guidance_embed": true
|
20 |
+
},
|
21 |
+
"ae_params": {
|
22 |
+
"resolution": 256,
|
23 |
+
"in_channels": 3,
|
24 |
+
"ch": 128,
|
25 |
+
"out_ch": 3,
|
26 |
+
"ch_mult": [
|
27 |
+
1,
|
28 |
+
2,
|
29 |
+
4,
|
30 |
+
4
|
31 |
+
],
|
32 |
+
"num_res_blocks": 2,
|
33 |
+
"z_channels": 16,
|
34 |
+
"scale_factor": 0.3611,
|
35 |
+
"shift_factor": 0.1159
|
36 |
+
},
|
37 |
+
"ckpt_path": "/big/generator-ui/flux-testing/flux/model-dir-schnell/flux1-schnell.sft",
|
38 |
+
"ae_path": "/big/generator-ui/flux-testing/flux/model-dir-schnell/ae.sft",
|
39 |
+
"repo_id": "black-forest-labs/FLUX.1-schnell",
|
40 |
+
"repo_flow": "flux1-schnell.sft",
|
41 |
+
"repo_ae": "ae.sft",
|
42 |
+
"text_enc_max_length": 256,
|
43 |
+
"text_enc_path": "city96/t5-v1_1-xxl-encoder-bf16",
|
44 |
+
"text_enc_device": "cuda:1",
|
45 |
+
"ae_device": "cuda:1",
|
46 |
+
"flux_device": "cuda:0",
|
47 |
+
"flow_dtype": "float16",
|
48 |
+
"ae_dtype": "bfloat16",
|
49 |
+
"text_enc_dtype": "bfloat16",
|
50 |
+
"num_to_quant": 20
|
51 |
+
}
|
cublas_linear.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Literal, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from cublas_ops_ext import _simt_hgemv
|
8 |
+
from cublas_ops_ext import cublas_hgemm_axbT as _cublas_hgemm_axbT
|
9 |
+
from cublas_ops_ext import cublas_hgemm_batched_simple as _cublas_hgemm_batched_simple
|
10 |
+
from cublas_ops_ext import (
|
11 |
+
cublaslt_hgemm_batched_simple as _cublaslt_hgemm_batched_simple,
|
12 |
+
)
|
13 |
+
from cublas_ops_ext import cublaslt_hgemm_simple as _cublaslt_hgemm_simple
|
14 |
+
from torch import Tensor, nn
|
15 |
+
|
16 |
+
global has_moved
|
17 |
+
has_moved = {idx: False for idx in range(torch.cuda.device_count())}
|
18 |
+
|
19 |
+
|
20 |
+
class StaticState:
|
21 |
+
workspace = {
|
22 |
+
idx: torch.empty((1024 * 1024 * 8,), dtype=torch.uint8)
|
23 |
+
for idx in range(torch.cuda.device_count())
|
24 |
+
}
|
25 |
+
workspace_size = workspace[0].nelement()
|
26 |
+
bias_g = {
|
27 |
+
idx: torch.tensor([], dtype=torch.float16)
|
28 |
+
for idx in range(torch.cuda.device_count())
|
29 |
+
}
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def get(cls, __name: str, device: torch.device) -> torch.Any:
|
33 |
+
global has_moved
|
34 |
+
idx = device.index if device.index is not None else 0
|
35 |
+
if not has_moved[idx]:
|
36 |
+
cls.workspace[idx] = cls.workspace[idx].cuda(idx)
|
37 |
+
cls.bias_g[idx] = cls.bias_g[idx].cuda(idx)
|
38 |
+
has_moved[idx] = True
|
39 |
+
if "bias" in __name:
|
40 |
+
return cls.bias_g[idx]
|
41 |
+
if "workspace" in __name:
|
42 |
+
return cls.workspace[idx]
|
43 |
+
if "workspace_size" in __name:
|
44 |
+
return cls.workspace_size
|
45 |
+
|
46 |
+
|
47 |
+
@torch.no_grad()
|
48 |
+
def hgemv_simt(vec: torch.HalfTensor, mat: torch.HalfTensor, block_dim_x: int = 32):
|
49 |
+
prev_dims = vec.shape[:-1]
|
50 |
+
out = _simt_hgemv(mat, vec.view(-1, 1), block_dim_x=block_dim_x).view(
|
51 |
+
*prev_dims, -1
|
52 |
+
)
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def cublas_half_matmul_batched_simple(a: torch.Tensor, b: torch.Tensor):
|
58 |
+
out = _cublas_hgemm_batched_simple(a, b)
|
59 |
+
return out
|
60 |
+
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def cublas_half_matmul_simple(a: torch.Tensor, b: torch.Tensor):
|
64 |
+
out = _cublas_hgemm_axbT(b, a)
|
65 |
+
return out
|
66 |
+
|
67 |
+
|
68 |
+
@torch.no_grad()
|
69 |
+
def cublaslt_fused_half_matmul_simple(
|
70 |
+
a: torch.Tensor,
|
71 |
+
b: torch.Tensor,
|
72 |
+
bias: Optional[torch.Tensor] = None,
|
73 |
+
epilogue_str: Optional[Literal["NONE", "RELU", "GELU"]] = "NONE",
|
74 |
+
):
|
75 |
+
if bias is None:
|
76 |
+
bias = StaticState.get("bias", a.device)
|
77 |
+
out = _cublaslt_hgemm_simple(
|
78 |
+
a, b, bias, epilogue_str, StaticState.get("workspace", a.device)
|
79 |
+
)
|
80 |
+
return out
|
81 |
+
|
82 |
+
|
83 |
+
@torch.no_grad()
|
84 |
+
def cublaslt_fused_half_matmul_batched_simple(
|
85 |
+
a: torch.Tensor,
|
86 |
+
b: torch.Tensor,
|
87 |
+
bias: Optional[torch.Tensor] = None,
|
88 |
+
epilogue_str: Optional[Literal["NONE", "RELU", "GELU"]] = "NONE",
|
89 |
+
):
|
90 |
+
if bias is None:
|
91 |
+
bias = StaticState.get("bias", a.device)
|
92 |
+
out = _cublaslt_hgemm_batched_simple(
|
93 |
+
a, b, bias, epilogue_str, StaticState.get("workspace", a.device)
|
94 |
+
)
|
95 |
+
return out
|
96 |
+
|
97 |
+
|
98 |
+
class CublasLinear(nn.Linear):
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
in_features,
|
102 |
+
out_features,
|
103 |
+
bias=True,
|
104 |
+
device=None,
|
105 |
+
dtype=torch.float16,
|
106 |
+
epilogue_str="NONE",
|
107 |
+
):
|
108 |
+
super().__init__(
|
109 |
+
in_features, out_features, bias=bias, device=device, dtype=dtype
|
110 |
+
)
|
111 |
+
self._epilogue_str = epilogue_str
|
112 |
+
self.has_bias = bias
|
113 |
+
self.has_checked_weight = False
|
114 |
+
|
115 |
+
def forward(self, x: Tensor) -> Tensor:
|
116 |
+
if not self.has_checked_weight:
|
117 |
+
if not self.weight.dtype == torch.float16:
|
118 |
+
self.to(dtype=torch.float16)
|
119 |
+
self.has_checked_weight = True
|
120 |
+
out_dtype = x.dtype
|
121 |
+
needs_convert = out_dtype != torch.float16
|
122 |
+
if needs_convert:
|
123 |
+
x = x.type(torch.float16)
|
124 |
+
|
125 |
+
use_cublasLt = self.has_bias or self._epilogue_str != "NONE"
|
126 |
+
if x.ndim == 1:
|
127 |
+
x = x.unsqueeze(0)
|
128 |
+
if math.prod(x.shape) == x.shape[-1]:
|
129 |
+
out = F.linear(x, self.weight, bias=self.bias)
|
130 |
+
if self._epilogue_str == "RELU":
|
131 |
+
return F.relu(out)
|
132 |
+
elif self._epilogue_str == "GELU":
|
133 |
+
return F.gelu(out)
|
134 |
+
if needs_convert:
|
135 |
+
return out.type(out_dtype)
|
136 |
+
return out
|
137 |
+
if use_cublasLt:
|
138 |
+
leading_dims = x.shape[:-1]
|
139 |
+
x = x.reshape(-1, x.shape[-1])
|
140 |
+
out = cublaslt_fused_half_matmul_simple(
|
141 |
+
x, self.weight, bias=self.bias.data, epilogue_str=self._epilogue_str
|
142 |
+
)
|
143 |
+
if needs_convert:
|
144 |
+
return out.view(*leading_dims, out.shape[-1]).type(out_dtype)
|
145 |
+
return out.view(*leading_dims, out.shape[-1])
|
146 |
+
else:
|
147 |
+
leading_dims = x.shape[:-1]
|
148 |
+
x = x.reshape(-1, x.shape[-1])
|
149 |
+
out = cublas_half_matmul_simple(x, self.weight)
|
150 |
+
if needs_convert:
|
151 |
+
return out.view(*leading_dims, out.shape[-1]).type(out_dtype)
|
152 |
+
return out.view(*leading_dims, out.shape[-1])
|
flux_impl.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
8 |
+
torch.backends.cudnn.allow_tf32 = True
|
9 |
+
torch.backends.cudnn.benchmark = True
|
10 |
+
torch.backends.cudnn.benchmark_limit = 20
|
11 |
+
torch.set_float32_matmul_precision("high")
|
12 |
+
from torch._dynamo import config
|
13 |
+
from torch._inductor import config as ind_config
|
14 |
+
|
15 |
+
config.cache_size_limit = 10000000000
|
16 |
+
ind_config.force_fuse_int_mm_with_mul = True
|
17 |
+
|
18 |
+
from loguru import logger
|
19 |
+
from torchao.quantization.quant_api import int8_weight_only, quantize_
|
20 |
+
|
21 |
+
from cublas_linear import CublasLinear as F16Linear
|
22 |
+
from modules.flux_model import RMSNorm
|
23 |
+
from sampling import denoise, get_noise, get_schedule, prepare, unpack
|
24 |
+
from turbojpeg_imgs import TurboImage
|
25 |
+
from util import (
|
26 |
+
ModelSpec,
|
27 |
+
into_device,
|
28 |
+
into_dtype,
|
29 |
+
load_config_from_path,
|
30 |
+
load_models_from_config,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
class Model:
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
name,
|
38 |
+
offload=False,
|
39 |
+
clip=None,
|
40 |
+
t5=None,
|
41 |
+
model=None,
|
42 |
+
ae=None,
|
43 |
+
dtype=torch.bfloat16,
|
44 |
+
verbose=False,
|
45 |
+
flux_device="cuda:0",
|
46 |
+
ae_device="cuda:1",
|
47 |
+
clip_device="cuda:1",
|
48 |
+
t5_device="cuda:1",
|
49 |
+
):
|
50 |
+
|
51 |
+
self.name = name
|
52 |
+
self.device_flux = (
|
53 |
+
flux_device
|
54 |
+
if isinstance(flux_device, torch.device)
|
55 |
+
else torch.device(flux_device)
|
56 |
+
)
|
57 |
+
self.device_ae = (
|
58 |
+
ae_device
|
59 |
+
if isinstance(ae_device, torch.device)
|
60 |
+
else torch.device(ae_device)
|
61 |
+
)
|
62 |
+
self.device_clip = (
|
63 |
+
clip_device
|
64 |
+
if isinstance(clip_device, torch.device)
|
65 |
+
else torch.device(clip_device)
|
66 |
+
)
|
67 |
+
self.device_t5 = (
|
68 |
+
t5_device
|
69 |
+
if isinstance(t5_device, torch.device)
|
70 |
+
else torch.device(t5_device)
|
71 |
+
)
|
72 |
+
self.dtype = dtype
|
73 |
+
self.offload = offload
|
74 |
+
self.clip = clip
|
75 |
+
self.t5 = t5
|
76 |
+
self.model = model
|
77 |
+
self.ae = ae
|
78 |
+
self.rng = torch.Generator(device="cpu")
|
79 |
+
self.turbojpeg = TurboImage()
|
80 |
+
self.verbose = verbose
|
81 |
+
|
82 |
+
@torch.inference_mode()
|
83 |
+
def generate(
|
84 |
+
self,
|
85 |
+
prompt,
|
86 |
+
width=720,
|
87 |
+
height=1023,
|
88 |
+
num_steps=24,
|
89 |
+
guidance=3.5,
|
90 |
+
seed=None,
|
91 |
+
):
|
92 |
+
if num_steps is None:
|
93 |
+
num_steps = 4 if self.name == "flux-schnell" else 50
|
94 |
+
|
95 |
+
# allow for packing and conversion to latent space
|
96 |
+
height = 16 * (height // 16)
|
97 |
+
width = 16 * (width // 16)
|
98 |
+
|
99 |
+
if seed is None:
|
100 |
+
seed = self.rng.seed()
|
101 |
+
logger.info(f"Generating with:\nSeed: {seed}\nPrompt: {prompt}")
|
102 |
+
|
103 |
+
x = get_noise(
|
104 |
+
1,
|
105 |
+
height,
|
106 |
+
width,
|
107 |
+
device=self.device_t5,
|
108 |
+
dtype=torch.bfloat16,
|
109 |
+
seed=seed,
|
110 |
+
)
|
111 |
+
inp = prepare(self.t5, self.clip, x, prompt=prompt)
|
112 |
+
timesteps = get_schedule(
|
113 |
+
num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell")
|
114 |
+
)
|
115 |
+
for k in inp:
|
116 |
+
inp[k] = inp[k].to(self.device_flux).type(self.dtype)
|
117 |
+
|
118 |
+
# denoise initial noise
|
119 |
+
x = denoise(
|
120 |
+
self.model,
|
121 |
+
**inp,
|
122 |
+
timesteps=timesteps,
|
123 |
+
guidance=guidance,
|
124 |
+
dtype=self.dtype,
|
125 |
+
device=self.device_flux,
|
126 |
+
)
|
127 |
+
inp.clear()
|
128 |
+
timesteps.clear()
|
129 |
+
torch.cuda.empty_cache()
|
130 |
+
x = x.to(self.device_ae)
|
131 |
+
|
132 |
+
# decode latents to pixel space
|
133 |
+
x = unpack(x.float(), height, width)
|
134 |
+
with torch.autocast(
|
135 |
+
device_type=self.device_ae.type, dtype=torch.bfloat16, cache_enabled=False
|
136 |
+
):
|
137 |
+
x = self.ae.decode(x)
|
138 |
+
|
139 |
+
# bring into PIL format and save
|
140 |
+
x = x.clamp(-1, 1)
|
141 |
+
num_images = x.shape[0]
|
142 |
+
images: List[torch.Tensor] = []
|
143 |
+
for i in range(num_images):
|
144 |
+
x = x[i].permute(1, 2, 0).add(1.0).mul(127.5).type(torch.uint8).contiguous()
|
145 |
+
images.append(x)
|
146 |
+
if len(images) == 1:
|
147 |
+
im = images[0]
|
148 |
+
else:
|
149 |
+
im = torch.vstack(images)
|
150 |
+
|
151 |
+
im = self.turbojpeg.encode_torch(im, quality=95)
|
152 |
+
images.clear()
|
153 |
+
return io.BytesIO(im)
|
154 |
+
|
155 |
+
|
156 |
+
def quant_module(module, running_sum_quants=0, device_index=0):
|
157 |
+
if isinstance(module, nn.Linear) and not isinstance(module, F16Linear):
|
158 |
+
module.cuda(device_index)
|
159 |
+
module.compile()
|
160 |
+
quantize_(module, int8_weight_only())
|
161 |
+
running_sum_quants += 1
|
162 |
+
elif isinstance(module, F16Linear):
|
163 |
+
module.cuda(device_index)
|
164 |
+
elif isinstance(module, nn.Conv2d):
|
165 |
+
module.cuda(device_index)
|
166 |
+
elif isinstance(module, nn.Embedding):
|
167 |
+
module.cuda(device_index)
|
168 |
+
elif isinstance(module, nn.ConvTranspose2d):
|
169 |
+
module.cuda(device_index)
|
170 |
+
elif isinstance(module, nn.Conv1d):
|
171 |
+
module.cuda(device_index)
|
172 |
+
elif isinstance(module, nn.Conv3d):
|
173 |
+
module.cuda(device_index)
|
174 |
+
elif isinstance(module, nn.ConvTranspose3d):
|
175 |
+
module.cuda(device_index)
|
176 |
+
elif isinstance(module, nn.RMSNorm):
|
177 |
+
module.cuda(device_index)
|
178 |
+
elif isinstance(module, RMSNorm):
|
179 |
+
module.cuda(device_index)
|
180 |
+
elif isinstance(module, nn.LayerNorm):
|
181 |
+
module.cuda(device_index)
|
182 |
+
return running_sum_quants
|
183 |
+
|
184 |
+
|
185 |
+
def full_quant(model, max_quants=24, current_quants=0, device_index=0):
|
186 |
+
for module in model.modules():
|
187 |
+
if current_quants < max_quants:
|
188 |
+
current_quants = quant_module(
|
189 |
+
module, current_quants, device_index=device_index
|
190 |
+
)
|
191 |
+
return current_quants
|
192 |
+
|
193 |
+
|
194 |
+
@torch.inference_mode()
|
195 |
+
def load_pipeline_from_config_path(path: str) -> Model:
|
196 |
+
config = load_config_from_path(path)
|
197 |
+
return load_pipeline_from_config(config)
|
198 |
+
|
199 |
+
|
200 |
+
@torch.inference_mode()
|
201 |
+
def load_pipeline_from_config(config: ModelSpec) -> Model:
|
202 |
+
models = load_models_from_config(config)
|
203 |
+
config = models.config
|
204 |
+
num_quanted = 0
|
205 |
+
max_quanted = config.num_to_quant
|
206 |
+
flux_device = into_device(config.flux_device)
|
207 |
+
ae_device = into_device(config.ae_device)
|
208 |
+
clip_device = into_device(config.text_enc_device)
|
209 |
+
t5_device = into_device(config.text_enc_device)
|
210 |
+
flux_dtype = into_dtype(config.flow_dtype)
|
211 |
+
device_index = flux_device.index or 0
|
212 |
+
flow_model = models.flow.requires_grad_(False).eval().type(flux_dtype)
|
213 |
+
for block in flow_model.single_blocks:
|
214 |
+
block.cuda(flux_device)
|
215 |
+
if num_quanted < max_quanted:
|
216 |
+
num_quanted = quant_module(
|
217 |
+
block.linear1, num_quanted, device_index=device_index
|
218 |
+
)
|
219 |
+
|
220 |
+
for block in flow_model.double_blocks:
|
221 |
+
block.cuda(flux_device)
|
222 |
+
if num_quanted < max_quanted:
|
223 |
+
num_quanted = full_quant(
|
224 |
+
block, max_quanted, num_quanted, device_index=device_index
|
225 |
+
)
|
226 |
+
|
227 |
+
to_gpu_extras = [
|
228 |
+
"vector_in",
|
229 |
+
"img_in",
|
230 |
+
"txt_in",
|
231 |
+
"time_in",
|
232 |
+
"guidance_in",
|
233 |
+
"final_layer",
|
234 |
+
"pe_embedder",
|
235 |
+
]
|
236 |
+
for extra in to_gpu_extras:
|
237 |
+
getattr(flow_model, extra).cuda(flux_device).type(flux_dtype)
|
238 |
+
return Model(
|
239 |
+
name=config.version,
|
240 |
+
clip=models.clip,
|
241 |
+
t5=models.t5,
|
242 |
+
model=flow_model,
|
243 |
+
ae=models.ae,
|
244 |
+
dtype=flux_dtype,
|
245 |
+
verbose=False,
|
246 |
+
flux_device=flux_device,
|
247 |
+
ae_device=ae_device,
|
248 |
+
clip_device=clip_device,
|
249 |
+
t5_device=t5_device,
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
pipe = load_pipeline_from_config_path("config-dev.json")
|
255 |
+
o = pipe.generate(
|
256 |
+
prompt="a beautiful asian woman in traditional clothing with golden hairpin and blue eyes, wearing a red kimono with dragon patterns",
|
257 |
+
height=1024,
|
258 |
+
width=1024,
|
259 |
+
seed=13456,
|
260 |
+
num_steps=24,
|
261 |
+
guidance=3.0,
|
262 |
+
)
|
263 |
+
open("out.jpg", "wb").write(o.read())
|
264 |
+
o = pipe.generate(
|
265 |
+
prompt="a beautiful asian woman in traditional clothing with golden hairpin and blue eyes, wearing a red kimono with dragon patterns",
|
266 |
+
height=1024,
|
267 |
+
width=1024,
|
268 |
+
seed=7,
|
269 |
+
num_steps=24,
|
270 |
+
guidance=3.0,
|
271 |
+
)
|
272 |
+
open("out2.jpg", "wb").write(o.read())
|
main.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import uvicorn
|
3 |
+
from api import app
|
4 |
+
from flux_impl import load_pipeline_from_config, load_pipeline_from_config_path
|
5 |
+
from util import load_config, ModelVersion
|
6 |
+
|
7 |
+
|
8 |
+
def parse_args():
|
9 |
+
parser = argparse.ArgumentParser(description="Launch Flux API server")
|
10 |
+
parser.add_argument(
|
11 |
+
"--config-path",
|
12 |
+
type=str,
|
13 |
+
help="Path to the configuration file, if not provided, the model will be loaded from the command line arguments",
|
14 |
+
)
|
15 |
+
parser.add_argument(
|
16 |
+
"--port", type=int, default=8088, help="Port to run the server on"
|
17 |
+
)
|
18 |
+
parser.add_argument(
|
19 |
+
"--host", type=str, default="0.0.0.0", help="Host to run the server on"
|
20 |
+
)
|
21 |
+
parser.add_argument("--flow-model-path", type=str, help="Path to the flow model")
|
22 |
+
parser.add_argument("--text-enc-path", type=str, help="Path to the text encoder")
|
23 |
+
parser.add_argument("--autoencoder-path", type=str, help="Path to the autoencoder")
|
24 |
+
parser.add_argument(
|
25 |
+
"--model-version",
|
26 |
+
type=str,
|
27 |
+
choices=["flux-dev", "flux-schnell"],
|
28 |
+
default="flux-dev",
|
29 |
+
help="Choose model version",
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--flux-device",
|
33 |
+
type=str,
|
34 |
+
default="cuda:0",
|
35 |
+
help="Device to run the flow model on",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--text-enc-device",
|
39 |
+
type=str,
|
40 |
+
default="cuda:0",
|
41 |
+
help="Device to run the text encoder on",
|
42 |
+
)
|
43 |
+
parser.add_argument(
|
44 |
+
"--autoencoder-device",
|
45 |
+
type=str,
|
46 |
+
default="cuda:0",
|
47 |
+
help="Device to run the autoencoder on",
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--num-to-quant",
|
51 |
+
type=int,
|
52 |
+
default=20,
|
53 |
+
help="Number of linear layers in flow transformer (the 'unet') to quantize",
|
54 |
+
)
|
55 |
+
|
56 |
+
return parser.parse_args()
|
57 |
+
|
58 |
+
|
59 |
+
def main():
|
60 |
+
args = parse_args()
|
61 |
+
|
62 |
+
if args.config_path:
|
63 |
+
app.state.model = load_pipeline_from_config_path(args.config_path)
|
64 |
+
else:
|
65 |
+
model_version = (
|
66 |
+
ModelVersion.flux_dev
|
67 |
+
if args.model_version == "flux-dev"
|
68 |
+
else ModelVersion.flux_schnell
|
69 |
+
)
|
70 |
+
config = load_config(
|
71 |
+
model_version,
|
72 |
+
flux_path=args.flow_model_path,
|
73 |
+
flux_device=args.flux_device,
|
74 |
+
ae_path=args.autoencoder_path,
|
75 |
+
ae_device=args.autoencoder_device,
|
76 |
+
text_enc_path=args.text_enc_path,
|
77 |
+
text_enc_device=args.text_enc_device,
|
78 |
+
flow_dtype="float16",
|
79 |
+
text_enc_dtype="bfloat16",
|
80 |
+
ae_dtype="bfloat16",
|
81 |
+
num_to_quant=args.num_to_quant,
|
82 |
+
)
|
83 |
+
app.state.model = load_pipeline_from_config(config)
|
84 |
+
|
85 |
+
uvicorn.run(app, host=args.host, port=args.port)
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
main()
|
modules/autoencoder.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from torch import Tensor, nn
|
4 |
+
from pydantic import BaseModel
|
5 |
+
|
6 |
+
|
7 |
+
class AutoEncoderParams(BaseModel):
|
8 |
+
resolution: int
|
9 |
+
in_channels: int
|
10 |
+
ch: int
|
11 |
+
out_ch: int
|
12 |
+
ch_mult: list[int]
|
13 |
+
num_res_blocks: int
|
14 |
+
z_channels: int
|
15 |
+
scale_factor: float
|
16 |
+
shift_factor: float
|
17 |
+
|
18 |
+
|
19 |
+
def swish(x: Tensor) -> Tensor:
|
20 |
+
return x * torch.sigmoid(x)
|
21 |
+
|
22 |
+
|
23 |
+
class AttnBlock(nn.Module):
|
24 |
+
def __init__(self, in_channels: int):
|
25 |
+
super().__init__()
|
26 |
+
self.in_channels = in_channels
|
27 |
+
|
28 |
+
self.norm = nn.GroupNorm(
|
29 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
30 |
+
)
|
31 |
+
|
32 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
33 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
34 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
35 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
36 |
+
|
37 |
+
def attention(self, h_: Tensor) -> Tensor:
|
38 |
+
h_ = self.norm(h_)
|
39 |
+
q = self.q(h_)
|
40 |
+
k = self.k(h_)
|
41 |
+
v = self.v(h_)
|
42 |
+
|
43 |
+
b, c, h, w = q.shape
|
44 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
45 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
46 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
47 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
48 |
+
|
49 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
50 |
+
|
51 |
+
def forward(self, x: Tensor) -> Tensor:
|
52 |
+
return x + self.proj_out(self.attention(x))
|
53 |
+
|
54 |
+
|
55 |
+
class ResnetBlock(nn.Module):
|
56 |
+
def __init__(self, in_channels: int, out_channels: int):
|
57 |
+
super().__init__()
|
58 |
+
self.in_channels = in_channels
|
59 |
+
out_channels = in_channels if out_channels is None else out_channels
|
60 |
+
self.out_channels = out_channels
|
61 |
+
|
62 |
+
self.norm1 = nn.GroupNorm(
|
63 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
64 |
+
)
|
65 |
+
self.conv1 = nn.Conv2d(
|
66 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
67 |
+
)
|
68 |
+
self.norm2 = nn.GroupNorm(
|
69 |
+
num_groups=32, num_channels=out_channels, eps=1e-6, affine=True
|
70 |
+
)
|
71 |
+
self.conv2 = nn.Conv2d(
|
72 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
73 |
+
)
|
74 |
+
if self.in_channels != self.out_channels:
|
75 |
+
self.nin_shortcut = nn.Conv2d(
|
76 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
77 |
+
)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
h = x
|
81 |
+
h = self.norm1(h)
|
82 |
+
h = swish(h)
|
83 |
+
h = self.conv1(h)
|
84 |
+
|
85 |
+
h = self.norm2(h)
|
86 |
+
h = swish(h)
|
87 |
+
h = self.conv2(h)
|
88 |
+
|
89 |
+
if self.in_channels != self.out_channels:
|
90 |
+
x = self.nin_shortcut(x)
|
91 |
+
|
92 |
+
return x + h
|
93 |
+
|
94 |
+
|
95 |
+
class Downsample(nn.Module):
|
96 |
+
def __init__(self, in_channels: int):
|
97 |
+
super().__init__()
|
98 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
99 |
+
self.conv = nn.Conv2d(
|
100 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, x: Tensor):
|
104 |
+
pad = (0, 1, 0, 1)
|
105 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
106 |
+
x = self.conv(x)
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
class Upsample(nn.Module):
|
111 |
+
def __init__(self, in_channels: int):
|
112 |
+
super().__init__()
|
113 |
+
self.conv = nn.Conv2d(
|
114 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x: Tensor):
|
118 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
119 |
+
x = self.conv(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Encoder(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
resolution: int,
|
127 |
+
in_channels: int,
|
128 |
+
ch: int,
|
129 |
+
ch_mult: list[int],
|
130 |
+
num_res_blocks: int,
|
131 |
+
z_channels: int,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
self.ch = ch
|
135 |
+
self.num_resolutions = len(ch_mult)
|
136 |
+
self.num_res_blocks = num_res_blocks
|
137 |
+
self.resolution = resolution
|
138 |
+
self.in_channels = in_channels
|
139 |
+
# downsampling
|
140 |
+
self.conv_in = nn.Conv2d(
|
141 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
142 |
+
)
|
143 |
+
|
144 |
+
curr_res = resolution
|
145 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
146 |
+
self.in_ch_mult = in_ch_mult
|
147 |
+
self.down = nn.ModuleList()
|
148 |
+
block_in = self.ch
|
149 |
+
for i_level in range(self.num_resolutions):
|
150 |
+
block = nn.ModuleList()
|
151 |
+
attn = nn.ModuleList()
|
152 |
+
block_in = ch * in_ch_mult[i_level]
|
153 |
+
block_out = ch * ch_mult[i_level]
|
154 |
+
for _ in range(self.num_res_blocks):
|
155 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
156 |
+
block_in = block_out
|
157 |
+
down = nn.Module()
|
158 |
+
down.block = block
|
159 |
+
down.attn = attn
|
160 |
+
if i_level != self.num_resolutions - 1:
|
161 |
+
down.downsample = Downsample(block_in)
|
162 |
+
curr_res = curr_res // 2
|
163 |
+
self.down.append(down)
|
164 |
+
|
165 |
+
# middle
|
166 |
+
self.mid = nn.Module()
|
167 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
168 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
169 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
170 |
+
|
171 |
+
# end
|
172 |
+
self.norm_out = nn.GroupNorm(
|
173 |
+
num_groups=32, num_channels=block_in, eps=1e-6, affine=True
|
174 |
+
)
|
175 |
+
self.conv_out = nn.Conv2d(
|
176 |
+
block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1
|
177 |
+
)
|
178 |
+
|
179 |
+
def forward(self, x: Tensor) -> Tensor:
|
180 |
+
# downsampling
|
181 |
+
hs = [self.conv_in(x)]
|
182 |
+
for i_level in range(self.num_resolutions):
|
183 |
+
for i_block in range(self.num_res_blocks):
|
184 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
185 |
+
if len(self.down[i_level].attn) > 0:
|
186 |
+
h = self.down[i_level].attn[i_block](h)
|
187 |
+
hs.append(h)
|
188 |
+
if i_level != self.num_resolutions - 1:
|
189 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
190 |
+
|
191 |
+
# middle
|
192 |
+
h = hs[-1]
|
193 |
+
h = self.mid.block_1(h)
|
194 |
+
h = self.mid.attn_1(h)
|
195 |
+
h = self.mid.block_2(h)
|
196 |
+
# end
|
197 |
+
h = self.norm_out(h)
|
198 |
+
h = swish(h)
|
199 |
+
h = self.conv_out(h)
|
200 |
+
return h
|
201 |
+
|
202 |
+
|
203 |
+
class Decoder(nn.Module):
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
ch: int,
|
207 |
+
out_ch: int,
|
208 |
+
ch_mult: list[int],
|
209 |
+
num_res_blocks: int,
|
210 |
+
in_channels: int,
|
211 |
+
resolution: int,
|
212 |
+
z_channels: int,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
self.ch = ch
|
216 |
+
self.num_resolutions = len(ch_mult)
|
217 |
+
self.num_res_blocks = num_res_blocks
|
218 |
+
self.resolution = resolution
|
219 |
+
self.in_channels = in_channels
|
220 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
221 |
+
|
222 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
223 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
224 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
225 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
226 |
+
|
227 |
+
# z to block_in
|
228 |
+
self.conv_in = nn.Conv2d(
|
229 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
230 |
+
)
|
231 |
+
|
232 |
+
# middle
|
233 |
+
self.mid = nn.Module()
|
234 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
235 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
236 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
237 |
+
|
238 |
+
# upsampling
|
239 |
+
self.up = nn.ModuleList()
|
240 |
+
for i_level in reversed(range(self.num_resolutions)):
|
241 |
+
block = nn.ModuleList()
|
242 |
+
attn = nn.ModuleList()
|
243 |
+
block_out = ch * ch_mult[i_level]
|
244 |
+
for _ in range(self.num_res_blocks + 1):
|
245 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
246 |
+
block_in = block_out
|
247 |
+
up = nn.Module()
|
248 |
+
up.block = block
|
249 |
+
up.attn = attn
|
250 |
+
if i_level != 0:
|
251 |
+
up.upsample = Upsample(block_in)
|
252 |
+
curr_res = curr_res * 2
|
253 |
+
self.up.insert(0, up) # prepend to get consistent order
|
254 |
+
|
255 |
+
# end
|
256 |
+
self.norm_out = nn.GroupNorm(
|
257 |
+
num_groups=32, num_channels=block_in, eps=1e-6, affine=True
|
258 |
+
)
|
259 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
260 |
+
|
261 |
+
def forward(self, z: Tensor) -> Tensor:
|
262 |
+
# z to block_in
|
263 |
+
h = self.conv_in(z)
|
264 |
+
|
265 |
+
# middle
|
266 |
+
h = self.mid.block_1(h)
|
267 |
+
h = self.mid.attn_1(h)
|
268 |
+
h = self.mid.block_2(h)
|
269 |
+
|
270 |
+
# upsampling
|
271 |
+
for i_level in reversed(range(self.num_resolutions)):
|
272 |
+
for i_block in range(self.num_res_blocks + 1):
|
273 |
+
h = self.up[i_level].block[i_block](h)
|
274 |
+
if len(self.up[i_level].attn) > 0:
|
275 |
+
h = self.up[i_level].attn[i_block](h)
|
276 |
+
if i_level != 0:
|
277 |
+
h = self.up[i_level].upsample(h)
|
278 |
+
|
279 |
+
# end
|
280 |
+
h = self.norm_out(h)
|
281 |
+
h = swish(h)
|
282 |
+
h = self.conv_out(h)
|
283 |
+
return h
|
284 |
+
|
285 |
+
|
286 |
+
class DiagonalGaussian(nn.Module):
|
287 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
288 |
+
super().__init__()
|
289 |
+
self.sample = sample
|
290 |
+
self.chunk_dim = chunk_dim
|
291 |
+
|
292 |
+
def forward(self, z: Tensor) -> Tensor:
|
293 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
294 |
+
if self.sample:
|
295 |
+
std = torch.exp(0.5 * logvar)
|
296 |
+
return mean + std * torch.randn_like(mean)
|
297 |
+
else:
|
298 |
+
return mean
|
299 |
+
|
300 |
+
|
301 |
+
class AutoEncoder(nn.Module):
|
302 |
+
def __init__(self, params: AutoEncoderParams):
|
303 |
+
super().__init__()
|
304 |
+
self.encoder = Encoder(
|
305 |
+
resolution=params.resolution,
|
306 |
+
in_channels=params.in_channels,
|
307 |
+
ch=params.ch,
|
308 |
+
ch_mult=params.ch_mult,
|
309 |
+
num_res_blocks=params.num_res_blocks,
|
310 |
+
z_channels=params.z_channels,
|
311 |
+
)
|
312 |
+
self.decoder = Decoder(
|
313 |
+
resolution=params.resolution,
|
314 |
+
in_channels=params.in_channels,
|
315 |
+
ch=params.ch,
|
316 |
+
out_ch=params.out_ch,
|
317 |
+
ch_mult=params.ch_mult,
|
318 |
+
num_res_blocks=params.num_res_blocks,
|
319 |
+
z_channels=params.z_channels,
|
320 |
+
)
|
321 |
+
self.reg = DiagonalGaussian()
|
322 |
+
|
323 |
+
self.scale_factor = params.scale_factor
|
324 |
+
self.shift_factor = params.shift_factor
|
325 |
+
|
326 |
+
def encode(self, x: Tensor) -> Tensor:
|
327 |
+
z = self.reg(self.encoder(x))
|
328 |
+
z = self.scale_factor * (z - self.shift_factor)
|
329 |
+
return z
|
330 |
+
|
331 |
+
def decode(self, z: Tensor) -> Tensor:
|
332 |
+
z = z / self.scale_factor + self.shift_factor
|
333 |
+
return self.decoder(z)
|
334 |
+
|
335 |
+
def forward(self, x: Tensor) -> Tensor:
|
336 |
+
return self.decode(self.encode(x))
|
modules/conditioner.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import Tensor, nn
|
2 |
+
import torch
|
3 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
4 |
+
|
5 |
+
from transformers.utils.quantization_config import BitsAndBytesConfig
|
6 |
+
|
7 |
+
|
8 |
+
class HFEmbedder(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self, version: str, max_length: int, device: torch.device | int, **hf_kwargs
|
11 |
+
):
|
12 |
+
super().__init__()
|
13 |
+
self.is_clip = version.startswith("openai")
|
14 |
+
self.max_length = max_length
|
15 |
+
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
16 |
+
|
17 |
+
if self.is_clip:
|
18 |
+
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
|
19 |
+
version, max_length=max_length
|
20 |
+
)
|
21 |
+
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(
|
22 |
+
version, **hf_kwargs
|
23 |
+
)
|
24 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False).to(device)
|
25 |
+
else:
|
26 |
+
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(
|
27 |
+
version, max_length=max_length
|
28 |
+
)
|
29 |
+
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(
|
30 |
+
version,
|
31 |
+
**hf_kwargs,
|
32 |
+
device_map={"": device},
|
33 |
+
quantization_config=BitsAndBytesConfig(
|
34 |
+
load_in_4bit=True,
|
35 |
+
),
|
36 |
+
)
|
37 |
+
|
38 |
+
def forward(self, text: list[str]) -> Tensor:
|
39 |
+
batch_encoding = self.tokenizer(
|
40 |
+
text,
|
41 |
+
truncation=True,
|
42 |
+
max_length=self.max_length,
|
43 |
+
return_length=False,
|
44 |
+
return_overflowing_tokens=False,
|
45 |
+
padding="max_length",
|
46 |
+
return_tensors="pt",
|
47 |
+
)
|
48 |
+
outputs = self.hf_module(
|
49 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
50 |
+
attention_mask=None,
|
51 |
+
output_hidden_states=False,
|
52 |
+
)
|
53 |
+
return outputs[self.output_key]
|
modules/flux_model.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
4 |
+
torch.backends.cudnn.allow_tf32 = True
|
5 |
+
torch.backends.cudnn.benchmark = True
|
6 |
+
torch.backends.cudnn.benchmark_limit = 20
|
7 |
+
torch.set_float32_matmul_precision("high")
|
8 |
+
import math
|
9 |
+
from dataclasses import dataclass
|
10 |
+
|
11 |
+
from cublas_linear import CublasLinear as F16Linear
|
12 |
+
from einops.layers.torch import Rearrange
|
13 |
+
from torch import Tensor, nn
|
14 |
+
from torch._dynamo import config
|
15 |
+
from torch._inductor import config as ind_config
|
16 |
+
from xformers.ops import memory_efficient_attention
|
17 |
+
from pydantic import BaseModel
|
18 |
+
|
19 |
+
config.cache_size_limit = 10000000000
|
20 |
+
ind_config.force_fuse_int_mm_with_mul = True
|
21 |
+
|
22 |
+
|
23 |
+
class FluxParams(BaseModel):
|
24 |
+
in_channels: int
|
25 |
+
vec_in_dim: int
|
26 |
+
context_in_dim: int
|
27 |
+
hidden_size: int
|
28 |
+
mlp_ratio: float
|
29 |
+
num_heads: int
|
30 |
+
depth: int
|
31 |
+
depth_single_blocks: int
|
32 |
+
axes_dim: list[int]
|
33 |
+
theta: int
|
34 |
+
qkv_bias: bool
|
35 |
+
guidance_embed: bool
|
36 |
+
|
37 |
+
|
38 |
+
@torch.compile(mode="reduce-overhead")
|
39 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
40 |
+
q, k = apply_rope(q, k, pe)
|
41 |
+
x = memory_efficient_attention(
|
42 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
43 |
+
)
|
44 |
+
x = x.reshape(*x.shape[:-2], -1)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
@torch.compile(mode="reduce-overhead")
|
49 |
+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
50 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
|
51 |
+
omega = 1.0 / (theta**scale)
|
52 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
53 |
+
out = torch.stack(
|
54 |
+
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
|
55 |
+
)
|
56 |
+
out = out.reshape(*out.shape[:-1], 2, 2)
|
57 |
+
return out
|
58 |
+
|
59 |
+
|
60 |
+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
61 |
+
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2)
|
62 |
+
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2)
|
63 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
64 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
65 |
+
return xq_out.reshape(*xq.shape), xk_out.reshape(*xk.shape)
|
66 |
+
|
67 |
+
|
68 |
+
class EmbedND(nn.Module):
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
dim: int,
|
72 |
+
theta: int,
|
73 |
+
axes_dim: list[int],
|
74 |
+
dtype: torch.dtype = torch.bfloat16,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
self.dim = dim
|
78 |
+
self.theta = theta
|
79 |
+
self.axes_dim = axes_dim
|
80 |
+
self.dtype = dtype
|
81 |
+
|
82 |
+
def forward(self, ids: Tensor) -> Tensor:
|
83 |
+
n_axes = ids.shape[-1]
|
84 |
+
emb = torch.cat(
|
85 |
+
[
|
86 |
+
rope(ids[..., i], self.axes_dim[i], self.theta).type(self.dtype)
|
87 |
+
for i in range(n_axes)
|
88 |
+
],
|
89 |
+
dim=-3,
|
90 |
+
)
|
91 |
+
|
92 |
+
return emb.unsqueeze(1)
|
93 |
+
|
94 |
+
|
95 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
96 |
+
"""
|
97 |
+
Create sinusoidal timestep embeddings.
|
98 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
99 |
+
These may be fractional.
|
100 |
+
:param dim: the dimension of the output.
|
101 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
102 |
+
:return: an (N, D) Tensor of positional embeddings.
|
103 |
+
"""
|
104 |
+
t = time_factor * t
|
105 |
+
half = dim // 2
|
106 |
+
freqs = torch.exp(
|
107 |
+
-math.log(max_period)
|
108 |
+
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
109 |
+
/ half
|
110 |
+
)
|
111 |
+
|
112 |
+
args = t[:, None].float() * freqs[None]
|
113 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
114 |
+
if dim % 2:
|
115 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
116 |
+
return embedding
|
117 |
+
|
118 |
+
|
119 |
+
class MLPEmbedder(nn.Module):
|
120 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
121 |
+
super().__init__()
|
122 |
+
self.in_layer = F16Linear(in_dim, hidden_dim, bias=True)
|
123 |
+
self.silu = nn.SiLU()
|
124 |
+
self.out_layer = F16Linear(hidden_dim, hidden_dim, bias=True)
|
125 |
+
|
126 |
+
def forward(self, x: Tensor) -> Tensor:
|
127 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
128 |
+
|
129 |
+
|
130 |
+
@torch.compile(mode="reduce-overhead", dynamic=True)
|
131 |
+
def calculation(
|
132 |
+
x,
|
133 |
+
):
|
134 |
+
rrms = torch.rsqrt(torch.mean(x.pow(2), dim=-1, keepdim=True) + 1e-6)
|
135 |
+
x = x * rrms
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
class RMSNorm(torch.nn.Module):
|
140 |
+
def __init__(self, dim: int):
|
141 |
+
super().__init__()
|
142 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
143 |
+
|
144 |
+
def forward(self, x: Tensor):
|
145 |
+
return calculation(x) * self.scale
|
146 |
+
|
147 |
+
|
148 |
+
class QKNorm(torch.nn.Module):
|
149 |
+
def __init__(self, dim: int):
|
150 |
+
super().__init__()
|
151 |
+
self.query_norm = RMSNorm(dim)
|
152 |
+
self.key_norm = RMSNorm(dim)
|
153 |
+
|
154 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
155 |
+
q = self.query_norm(q)
|
156 |
+
k = self.key_norm(k)
|
157 |
+
return q, k
|
158 |
+
|
159 |
+
|
160 |
+
class SelfAttention(nn.Module):
|
161 |
+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
162 |
+
super().__init__()
|
163 |
+
self.num_heads = num_heads
|
164 |
+
head_dim = dim // num_heads
|
165 |
+
|
166 |
+
self.qkv = F16Linear(dim, dim * 3, bias=qkv_bias)
|
167 |
+
self.norm = QKNorm(head_dim)
|
168 |
+
self.proj = F16Linear(dim, dim)
|
169 |
+
self.rearrange = Rearrange("B L (K H D) -> K B H L D", K=3, H=num_heads)
|
170 |
+
|
171 |
+
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
172 |
+
qkv = self.qkv(x)
|
173 |
+
q, k, v = self.rearrange(qkv)
|
174 |
+
q, k = self.norm(q, k, v)
|
175 |
+
x = attention(q, k, v, pe=pe)
|
176 |
+
x = self.proj(x)
|
177 |
+
return x
|
178 |
+
|
179 |
+
|
180 |
+
@dataclass
|
181 |
+
class ModulationOut:
|
182 |
+
shift: Tensor
|
183 |
+
scale: Tensor
|
184 |
+
gate: Tensor
|
185 |
+
|
186 |
+
|
187 |
+
class Modulation(nn.Module):
|
188 |
+
def __init__(self, dim: int, double: bool):
|
189 |
+
super().__init__()
|
190 |
+
self.is_double = double
|
191 |
+
self.multiplier = 6 if double else 3
|
192 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
193 |
+
self.act = nn.SiLU()
|
194 |
+
|
195 |
+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
196 |
+
out = self.lin(self.act(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
197 |
+
|
198 |
+
return (
|
199 |
+
ModulationOut(*out[:3]),
|
200 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
class DoubleStreamBlock(nn.Module):
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
hidden_size: int,
|
208 |
+
num_heads: int,
|
209 |
+
mlp_ratio: float,
|
210 |
+
qkv_bias: bool = False,
|
211 |
+
dtype: torch.dtype = torch.bfloat16,
|
212 |
+
idx: int = 0,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
self.dtype = dtype
|
216 |
+
|
217 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
218 |
+
self.num_heads = num_heads
|
219 |
+
self.hidden_size = hidden_size
|
220 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
221 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
222 |
+
self.img_attn = SelfAttention(
|
223 |
+
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
|
224 |
+
)
|
225 |
+
|
226 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
227 |
+
self.img_mlp = nn.Sequential(
|
228 |
+
F16Linear(hidden_size, mlp_hidden_dim, bias=True),
|
229 |
+
nn.GELU(approximate="tanh"),
|
230 |
+
F16Linear(mlp_hidden_dim, hidden_size, bias=True),
|
231 |
+
)
|
232 |
+
|
233 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
234 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
235 |
+
self.txt_attn = SelfAttention(
|
236 |
+
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
|
237 |
+
)
|
238 |
+
|
239 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
240 |
+
self.txt_mlp = nn.Sequential(
|
241 |
+
(F16Linear(hidden_size, mlp_hidden_dim, bias=True)),
|
242 |
+
nn.GELU(approximate="tanh"),
|
243 |
+
(F16Linear(mlp_hidden_dim, hidden_size, bias=True)),
|
244 |
+
)
|
245 |
+
self.rearrange_for_norm = Rearrange(
|
246 |
+
"B L (K H D) -> K B H L D", K=3, H=num_heads
|
247 |
+
)
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
img: Tensor,
|
252 |
+
txt: Tensor,
|
253 |
+
vec: Tensor,
|
254 |
+
pe: Tensor,
|
255 |
+
) -> tuple[Tensor, Tensor]:
|
256 |
+
img_mod1, img_mod2 = self.img_mod(vec)
|
257 |
+
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
258 |
+
|
259 |
+
# prepare image for attention
|
260 |
+
img_modulated = self.img_norm1(img)
|
261 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
262 |
+
img_qkv = self.img_attn.qkv(img_modulated)
|
263 |
+
img_q, img_k, img_v = self.rearrange_for_norm(img_qkv)
|
264 |
+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
265 |
+
|
266 |
+
# prepare txt for attention
|
267 |
+
txt_modulated = self.txt_norm1(txt)
|
268 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
269 |
+
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
270 |
+
txt_q, txt_k, txt_v = self.rearrange_for_norm(txt_qkv)
|
271 |
+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
272 |
+
|
273 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
274 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
275 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
276 |
+
|
277 |
+
attn = attention(q, k, v, pe=pe)
|
278 |
+
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
279 |
+
# calculate the img bloks
|
280 |
+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
281 |
+
img = img + img_mod2.gate * self.img_mlp(
|
282 |
+
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
|
283 |
+
).clamp(min=-384, max=384)
|
284 |
+
|
285 |
+
# calculate the txt bloks
|
286 |
+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
287 |
+
txt = txt + txt_mod2.gate * self.txt_mlp(
|
288 |
+
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
|
289 |
+
).clamp(min=-384, max=384)
|
290 |
+
|
291 |
+
return img, txt
|
292 |
+
|
293 |
+
|
294 |
+
class SingleStreamBlock(nn.Module):
|
295 |
+
"""
|
296 |
+
A DiT block with parallel linear layers as described in
|
297 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
298 |
+
"""
|
299 |
+
|
300 |
+
def __init__(
|
301 |
+
self,
|
302 |
+
hidden_size: int,
|
303 |
+
num_heads: int,
|
304 |
+
mlp_ratio: float = 4.0,
|
305 |
+
qk_scale: float | None = None,
|
306 |
+
dtype: torch.dtype = torch.bfloat16,
|
307 |
+
):
|
308 |
+
super().__init__()
|
309 |
+
self.dtype = dtype
|
310 |
+
self.hidden_dim = hidden_size
|
311 |
+
self.num_heads = num_heads
|
312 |
+
head_dim = hidden_size // num_heads
|
313 |
+
self.scale = qk_scale or head_dim**-0.5
|
314 |
+
|
315 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
316 |
+
# qkv and mlp_in
|
317 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
318 |
+
# proj and mlp_out
|
319 |
+
self.linear2 = F16Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
320 |
+
|
321 |
+
self.norm = QKNorm(head_dim)
|
322 |
+
|
323 |
+
self.hidden_size = hidden_size
|
324 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
325 |
+
|
326 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
327 |
+
self.modulation = Modulation(hidden_size, double=False)
|
328 |
+
self.rearrange_for_norm = Rearrange(
|
329 |
+
"B L (K H D) -> K B H L D", K=3, H=num_heads
|
330 |
+
)
|
331 |
+
|
332 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
333 |
+
mod = self.modulation(vec)[0]
|
334 |
+
pre_norm = self.pre_norm(x)
|
335 |
+
x_mod = (1 + mod.scale) * pre_norm + mod.shift
|
336 |
+
qkv, mlp = torch.split(
|
337 |
+
self.linear1(x_mod),
|
338 |
+
[3 * self.hidden_size, self.mlp_hidden_dim],
|
339 |
+
dim=-1,
|
340 |
+
)
|
341 |
+
q, k, v = self.rearrange_for_norm(qkv)
|
342 |
+
q, k = self.norm(q, k, v)
|
343 |
+
attn = attention(q, k, v, pe=pe)
|
344 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)).clamp(
|
345 |
+
min=-384, max=384
|
346 |
+
)
|
347 |
+
return x + mod.gate * output
|
348 |
+
|
349 |
+
|
350 |
+
class LastLayer(nn.Module):
|
351 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
352 |
+
super().__init__()
|
353 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
354 |
+
self.linear = nn.Linear(
|
355 |
+
hidden_size, patch_size * patch_size * out_channels, bias=True
|
356 |
+
)
|
357 |
+
self.adaLN_modulation = nn.Sequential(
|
358 |
+
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
359 |
+
)
|
360 |
+
|
361 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
362 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
363 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
364 |
+
x = self.linear(x)
|
365 |
+
return x
|
366 |
+
|
367 |
+
|
368 |
+
class Flux(nn.Module):
|
369 |
+
"""
|
370 |
+
Transformer model for flow matching on sequences.
|
371 |
+
"""
|
372 |
+
|
373 |
+
def __init__(self, params: FluxParams, dtype: torch.dtype = torch.bfloat16):
|
374 |
+
super().__init__()
|
375 |
+
|
376 |
+
self.dtype = dtype
|
377 |
+
self.params = params
|
378 |
+
self.in_channels = params.in_channels
|
379 |
+
self.out_channels = self.in_channels
|
380 |
+
if params.hidden_size % params.num_heads != 0:
|
381 |
+
raise ValueError(
|
382 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
383 |
+
)
|
384 |
+
pe_dim = params.hidden_size // params.num_heads
|
385 |
+
if sum(params.axes_dim) != pe_dim:
|
386 |
+
raise ValueError(
|
387 |
+
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
|
388 |
+
)
|
389 |
+
self.hidden_size = params.hidden_size
|
390 |
+
self.num_heads = params.num_heads
|
391 |
+
self.pe_embedder = EmbedND(
|
392 |
+
dim=pe_dim,
|
393 |
+
theta=params.theta,
|
394 |
+
axes_dim=params.axes_dim,
|
395 |
+
dtype=self.dtype,
|
396 |
+
)
|
397 |
+
self.img_in = F16Linear(self.in_channels, self.hidden_size, bias=True)
|
398 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
399 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
400 |
+
self.guidance_in = (
|
401 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
402 |
+
if params.guidance_embed
|
403 |
+
else nn.Identity()
|
404 |
+
)
|
405 |
+
self.txt_in = F16Linear(params.context_in_dim, self.hidden_size)
|
406 |
+
|
407 |
+
self.double_blocks = nn.ModuleList(
|
408 |
+
[
|
409 |
+
DoubleStreamBlock(
|
410 |
+
self.hidden_size,
|
411 |
+
self.num_heads,
|
412 |
+
mlp_ratio=params.mlp_ratio,
|
413 |
+
qkv_bias=params.qkv_bias,
|
414 |
+
dtype=self.dtype,
|
415 |
+
idx=idx,
|
416 |
+
)
|
417 |
+
for idx in range(params.depth)
|
418 |
+
]
|
419 |
+
)
|
420 |
+
|
421 |
+
self.single_blocks = nn.ModuleList(
|
422 |
+
[
|
423 |
+
SingleStreamBlock(
|
424 |
+
self.hidden_size,
|
425 |
+
self.num_heads,
|
426 |
+
mlp_ratio=params.mlp_ratio,
|
427 |
+
dtype=self.dtype,
|
428 |
+
)
|
429 |
+
for _ in range(params.depth_single_blocks)
|
430 |
+
]
|
431 |
+
)
|
432 |
+
|
433 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
434 |
+
|
435 |
+
def forward(
|
436 |
+
self,
|
437 |
+
img: Tensor,
|
438 |
+
img_ids: Tensor,
|
439 |
+
txt: Tensor,
|
440 |
+
txt_ids: Tensor,
|
441 |
+
timesteps: Tensor,
|
442 |
+
y: Tensor,
|
443 |
+
guidance: Tensor | None = None,
|
444 |
+
) -> Tensor:
|
445 |
+
if img.ndim != 3 or txt.ndim != 3:
|
446 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
447 |
+
|
448 |
+
# running on sequences img
|
449 |
+
img = self.img_in(img)
|
450 |
+
vec = self.time_in(timestep_embedding(timesteps, 256).type(self.dtype))
|
451 |
+
|
452 |
+
if self.params.guidance_embed:
|
453 |
+
if guidance is None:
|
454 |
+
raise ValueError(
|
455 |
+
"Didn't get guidance strength for guidance distilled model."
|
456 |
+
)
|
457 |
+
vec = vec + self.guidance_in(
|
458 |
+
timestep_embedding(guidance, 256).type(self.dtype)
|
459 |
+
)
|
460 |
+
vec = vec + self.vector_in(y)
|
461 |
+
|
462 |
+
txt = self.txt_in(txt)
|
463 |
+
|
464 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
465 |
+
pe = self.pe_embedder(ids)
|
466 |
+
|
467 |
+
for i, block in enumerate(self.double_blocks):
|
468 |
+
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
469 |
+
|
470 |
+
img = torch.cat((txt, img), 1)
|
471 |
+
for block in self.single_blocks:
|
472 |
+
img = block(img, vec=vec, pe=pe)
|
473 |
+
|
474 |
+
img = img[:, txt.shape[1] :, ...]
|
475 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
476 |
+
return img
|
477 |
+
|
478 |
+
@classmethod
|
479 |
+
def from_safetensors(
|
480 |
+
self,
|
481 |
+
model_path: str,
|
482 |
+
model_params: FluxParams,
|
483 |
+
dtype: torch.dtype = torch.bfloat16,
|
484 |
+
device: torch.device = torch.device(
|
485 |
+
"cuda" if torch.cuda.is_available() else "cpu"
|
486 |
+
),
|
487 |
+
):
|
488 |
+
|
489 |
+
model = Flux(params=model_params, dtype=dtype)
|
490 |
+
model.load_state_dict(model_path.state_dict())
|
491 |
+
model.to(device)
|
492 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/aredden/torch-cublas-hgemm.git@master
|
2 |
+
git+https://github.com/pytorch/ao.git@main
|
3 |
+
einops
|
4 |
+
PyTurboJPEG
|
5 |
+
pydantic
|
6 |
+
fastapi
|
7 |
+
bitsandbytes
|
8 |
+
xformers
|
9 |
+
loguru
|
10 |
+
transformers
|
11 |
+
tokenizers
|
12 |
+
sentencepiece
|
sampling.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
from modules.flux_model import Flux
|
9 |
+
from modules.conditioner import HFEmbedder
|
10 |
+
|
11 |
+
|
12 |
+
@torch.inference_mode()
|
13 |
+
def get_noise(
|
14 |
+
num_samples: int,
|
15 |
+
height: int,
|
16 |
+
width: int,
|
17 |
+
device: torch.device,
|
18 |
+
dtype: torch.dtype,
|
19 |
+
seed: int,
|
20 |
+
):
|
21 |
+
return torch.randn(
|
22 |
+
num_samples,
|
23 |
+
16,
|
24 |
+
# allow for packing
|
25 |
+
2 * math.ceil(height / 16),
|
26 |
+
2 * math.ceil(width / 16),
|
27 |
+
device=device,
|
28 |
+
dtype=dtype,
|
29 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
@torch.inference_mode()
|
34 |
+
def prepare(
|
35 |
+
t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]
|
36 |
+
) -> dict[str, Tensor]:
|
37 |
+
bs, c, h, w = img.shape
|
38 |
+
if bs == 1 and not isinstance(prompt, str):
|
39 |
+
bs = len(prompt)
|
40 |
+
|
41 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
42 |
+
if img.shape[0] == 1 and bs > 1:
|
43 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
44 |
+
|
45 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
46 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
47 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
48 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
49 |
+
|
50 |
+
if isinstance(prompt, str):
|
51 |
+
prompt = [prompt]
|
52 |
+
txt = t5(prompt)
|
53 |
+
if txt.shape[0] == 1 and bs > 1:
|
54 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
55 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
56 |
+
|
57 |
+
vec = clip(prompt)
|
58 |
+
if vec.shape[0] == 1 and bs > 1:
|
59 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
60 |
+
|
61 |
+
return {
|
62 |
+
"img": img,
|
63 |
+
"img_ids": img_ids.to(img.device),
|
64 |
+
"txt": txt.to(img.device),
|
65 |
+
"txt_ids": txt_ids.to(img.device),
|
66 |
+
"vec": vec.to(img.device),
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
71 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
72 |
+
|
73 |
+
|
74 |
+
def get_lin_function(
|
75 |
+
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
76 |
+
) -> Callable[[float], float]:
|
77 |
+
m = (y2 - y1) / (x2 - x1)
|
78 |
+
b = y1 - m * x1
|
79 |
+
return lambda x: m * x + b
|
80 |
+
|
81 |
+
|
82 |
+
def get_schedule(
|
83 |
+
num_steps: int,
|
84 |
+
image_seq_len: int,
|
85 |
+
base_shift: float = 0.5,
|
86 |
+
max_shift: float = 1.15,
|
87 |
+
shift: bool = True,
|
88 |
+
) -> list[float]:
|
89 |
+
# extra step for zero
|
90 |
+
timesteps = torch.linspace(1, 0, num_steps + 1)
|
91 |
+
|
92 |
+
# shifting the schedule to favor high timesteps for higher signal images
|
93 |
+
if shift:
|
94 |
+
# eastimate mu based on linear estimation between two points
|
95 |
+
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
96 |
+
timesteps = time_shift(mu, 1.0, timesteps)
|
97 |
+
|
98 |
+
return timesteps.tolist()
|
99 |
+
|
100 |
+
|
101 |
+
@torch.inference_mode()
|
102 |
+
def denoise(
|
103 |
+
model: Flux,
|
104 |
+
# model input
|
105 |
+
img: Tensor,
|
106 |
+
img_ids: Tensor,
|
107 |
+
txt: Tensor,
|
108 |
+
txt_ids: Tensor,
|
109 |
+
vec: Tensor,
|
110 |
+
# sampling parameters
|
111 |
+
timesteps: list[float],
|
112 |
+
guidance: float = 4.0,
|
113 |
+
dtype: torch.dtype = torch.bfloat16,
|
114 |
+
device: torch.device = torch.device("cuda:0"),
|
115 |
+
):
|
116 |
+
from tqdm import tqdm
|
117 |
+
|
118 |
+
# this is ignored for schnell
|
119 |
+
img = img.to(device=device, dtype=dtype)
|
120 |
+
img_ids = img_ids.to(device=device, dtype=dtype)
|
121 |
+
txt = txt.to(device=device, dtype=dtype)
|
122 |
+
txt_ids = txt_ids.to(device=device, dtype=dtype)
|
123 |
+
vec = vec.to(device=device, dtype=dtype)
|
124 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=device, dtype=dtype)
|
125 |
+
for t_curr, t_prev in tqdm(
|
126 |
+
zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1
|
127 |
+
):
|
128 |
+
t_vec = torch.full((img.shape[0],), t_curr, dtype=dtype, device=device)
|
129 |
+
pred = model(
|
130 |
+
img=img,
|
131 |
+
img_ids=img_ids,
|
132 |
+
txt=txt,
|
133 |
+
txt_ids=txt_ids,
|
134 |
+
y=vec,
|
135 |
+
timesteps=t_vec,
|
136 |
+
guidance=guidance_vec,
|
137 |
+
)
|
138 |
+
|
139 |
+
img = img + (t_prev - t_curr) * pred
|
140 |
+
|
141 |
+
return img
|
142 |
+
|
143 |
+
|
144 |
+
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
145 |
+
return rearrange(
|
146 |
+
x,
|
147 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
148 |
+
h=math.ceil(height / 16),
|
149 |
+
w=math.ceil(width / 16),
|
150 |
+
ph=2,
|
151 |
+
pw=2,
|
152 |
+
)
|
turbojpeg_imgs.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from turbojpeg import (
|
4 |
+
TurboJPEG,
|
5 |
+
TJPF_GRAY,
|
6 |
+
TJFLAG_PROGRESSIVE,
|
7 |
+
TJFLAG_FASTUPSAMPLE,
|
8 |
+
TJFLAG_FASTDCT,
|
9 |
+
TJPF_RGB,
|
10 |
+
TJPF_BGR,
|
11 |
+
TJSAMP_GRAY,
|
12 |
+
TJSAMP_411,
|
13 |
+
TJSAMP_420,
|
14 |
+
TJSAMP_422,
|
15 |
+
TJSAMP_444,
|
16 |
+
TJSAMP_440,
|
17 |
+
TJSAMP_441,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
class Subsampling:
|
22 |
+
S411 = TJSAMP_411
|
23 |
+
S420 = TJSAMP_420
|
24 |
+
S422 = TJSAMP_422
|
25 |
+
S444 = TJSAMP_444
|
26 |
+
S440 = TJSAMP_440
|
27 |
+
S441 = TJSAMP_441
|
28 |
+
GRAY = TJSAMP_GRAY
|
29 |
+
|
30 |
+
|
31 |
+
class Flags:
|
32 |
+
PROGRESSIVE = TJFLAG_PROGRESSIVE
|
33 |
+
FASTUPSAMPLE = TJFLAG_FASTUPSAMPLE
|
34 |
+
FASTDCT = TJFLAG_FASTDCT
|
35 |
+
|
36 |
+
|
37 |
+
class PixelFormat:
|
38 |
+
GRAY = TJPF_GRAY
|
39 |
+
RGB = TJPF_RGB
|
40 |
+
BGR = TJPF_BGR
|
41 |
+
|
42 |
+
|
43 |
+
class TurboImage:
|
44 |
+
def __init__(self):
|
45 |
+
self.tj = TurboJPEG()
|
46 |
+
self.flags = Flags.PROGRESSIVE
|
47 |
+
|
48 |
+
self.subsampling_gray = Subsampling.GRAY
|
49 |
+
self.pixel_format_gray = PixelFormat.GRAY
|
50 |
+
self.subsampling_rgb = Subsampling.S420
|
51 |
+
self.pixel_format_rgb = PixelFormat.RGB
|
52 |
+
|
53 |
+
def set_subsampling_gray(self, subsampling):
|
54 |
+
self.subsampling_gray = subsampling
|
55 |
+
|
56 |
+
def set_subsampling_rgb(self, subsampling):
|
57 |
+
self.subsampling_rgb = subsampling
|
58 |
+
|
59 |
+
def set_pixel_format_gray(self, pixel_format):
|
60 |
+
self.pixel_format_gray = pixel_format
|
61 |
+
|
62 |
+
def set_pixel_format_rgb(self, pixel_format):
|
63 |
+
self.pixel_format_rgb = pixel_format
|
64 |
+
|
65 |
+
def set_flags(self, flags):
|
66 |
+
self.flags = flags
|
67 |
+
|
68 |
+
def encode(
|
69 |
+
self,
|
70 |
+
img,
|
71 |
+
subsampling,
|
72 |
+
pixel_format,
|
73 |
+
quality=90,
|
74 |
+
):
|
75 |
+
return self.tj.encode(
|
76 |
+
img,
|
77 |
+
quality=quality,
|
78 |
+
flags=self.flags,
|
79 |
+
pixel_format=pixel_format,
|
80 |
+
jpeg_subsample=subsampling,
|
81 |
+
)
|
82 |
+
|
83 |
+
@torch.inference_mode()
|
84 |
+
def encode_torch(self, img: torch.Tensor, quality=90):
|
85 |
+
if img.ndim == 2:
|
86 |
+
subsampling = self.subsampling_gray
|
87 |
+
pixel_format = self.pixel_format_gray
|
88 |
+
img = img.clamp(0, 255).cpu().contiguous().numpy().astype(np.uint8)
|
89 |
+
elif img.ndim == 3:
|
90 |
+
subsampling = self.subsampling_rgb
|
91 |
+
pixel_format = self.pixel_format_rgb
|
92 |
+
if img.shape[0] == 3:
|
93 |
+
img = (
|
94 |
+
img.permute(1, 2, 0)
|
95 |
+
.clamp(0, 255)
|
96 |
+
.cpu()
|
97 |
+
.contiguous()
|
98 |
+
.numpy()
|
99 |
+
.astype(np.uint8)
|
100 |
+
)
|
101 |
+
elif img.shape[2] == 3:
|
102 |
+
img = img.clamp(0, 255).cpu().contiguous().numpy().astype(np.uint8)
|
103 |
+
else:
|
104 |
+
raise ValueError(f"Unsupported image shape: {img.shape}")
|
105 |
+
else:
|
106 |
+
raise ValueError(f"Unsupported image num dims: {img.ndim}")
|
107 |
+
|
108 |
+
return self.encode(
|
109 |
+
img,
|
110 |
+
quality=quality,
|
111 |
+
subsampling=subsampling,
|
112 |
+
pixel_format=pixel_format,
|
113 |
+
)
|
114 |
+
|
115 |
+
def encode_numpy(self, img: np.ndarray, quality=90):
|
116 |
+
if img.ndim == 2:
|
117 |
+
subsampling = self.subsampling_gray
|
118 |
+
pixel_format = self.pixel_format_gray
|
119 |
+
elif img.ndim == 3:
|
120 |
+
if img.shape[0] == 3:
|
121 |
+
img = np.ascontiguousarray(img.transpose(1, 2, 0))
|
122 |
+
elif img.shape[2] == 3:
|
123 |
+
img = np.ascontiguousarray(img)
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Unsupported image shape: {img.shape}")
|
126 |
+
subsampling = self.subsampling_rgb
|
127 |
+
pixel_format = self.pixel_format_rgb
|
128 |
+
else:
|
129 |
+
raise ValueError(f"Unsupported image num dims: {img.ndim}")
|
130 |
+
|
131 |
+
img = img.clip(0, 255).astype(np.uint8)
|
132 |
+
return self.encode(
|
133 |
+
img, quality=quality, subsampling=subsampling, pixel_format=pixel_format
|
134 |
+
)
|
util.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from modules.autoencoder import AutoEncoder, AutoEncoderParams
|
7 |
+
from modules.conditioner import HFEmbedder
|
8 |
+
from modules.flux_model import Flux, FluxParams
|
9 |
+
|
10 |
+
from safetensors.torch import load_file as load_sft
|
11 |
+
from enum import StrEnum
|
12 |
+
from pydantic import BaseModel, ConfigDict
|
13 |
+
from loguru import logger
|
14 |
+
|
15 |
+
|
16 |
+
class ModelVersion(StrEnum):
|
17 |
+
flux_dev = "flux-dev"
|
18 |
+
flux_schnell = "flux-schnell"
|
19 |
+
|
20 |
+
|
21 |
+
class ModelSpec(BaseModel):
|
22 |
+
version: ModelVersion
|
23 |
+
params: FluxParams
|
24 |
+
ae_params: AutoEncoderParams
|
25 |
+
ckpt_path: str | None
|
26 |
+
ae_path: str | None
|
27 |
+
repo_id: str | None
|
28 |
+
repo_flow: str | None
|
29 |
+
repo_ae: str | None
|
30 |
+
text_enc_max_length: int = 512
|
31 |
+
text_enc_path: str | None
|
32 |
+
text_enc_device: str | torch.device | None = "cuda:0"
|
33 |
+
ae_device: str | torch.device | None = "cuda:0"
|
34 |
+
flux_device: str | torch.device | None = "cuda:0"
|
35 |
+
flow_dtype: str = "float16"
|
36 |
+
ae_dtype: str = "bfloat16"
|
37 |
+
text_enc_dtype: str = "bfloat16"
|
38 |
+
num_to_quant: Optional[int] = 20
|
39 |
+
|
40 |
+
model_config: ConfigDict = {
|
41 |
+
"arbitrary_types_allowed": True,
|
42 |
+
"use_enum_values": True,
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def load_models(config: ModelSpec) -> tuple[Flux, AutoEncoder, HFEmbedder, HFEmbedder]:
|
47 |
+
flow = load_flow_model(config)
|
48 |
+
ae = load_autoencoder(config)
|
49 |
+
clip, t5 = load_text_encoders(config)
|
50 |
+
return flow, ae, clip, t5
|
51 |
+
|
52 |
+
|
53 |
+
def parse_device(device: str | torch.device | None) -> torch.device:
|
54 |
+
if isinstance(device, str):
|
55 |
+
return torch.device(device)
|
56 |
+
elif isinstance(device, torch.device):
|
57 |
+
return device
|
58 |
+
else:
|
59 |
+
return torch.device("cuda:0")
|
60 |
+
|
61 |
+
|
62 |
+
def into_dtype(dtype: str) -> torch.dtype:
|
63 |
+
if dtype == "float16":
|
64 |
+
return torch.float16
|
65 |
+
elif dtype == "bfloat16":
|
66 |
+
return torch.bfloat16
|
67 |
+
elif dtype == "float32":
|
68 |
+
return torch.float32
|
69 |
+
else:
|
70 |
+
raise ValueError(f"Invalid dtype: {dtype}")
|
71 |
+
|
72 |
+
|
73 |
+
def into_device(device: str | torch.device | None) -> torch.device:
|
74 |
+
if isinstance(device, str):
|
75 |
+
return torch.device(device)
|
76 |
+
elif isinstance(device, torch.device):
|
77 |
+
return device
|
78 |
+
elif isinstance(device, int):
|
79 |
+
return torch.device(f"cuda:{device}")
|
80 |
+
else:
|
81 |
+
return torch.device("cuda:0")
|
82 |
+
|
83 |
+
|
84 |
+
def load_config(
|
85 |
+
name: ModelVersion = ModelVersion.flux_dev,
|
86 |
+
flux_path: str | None = None,
|
87 |
+
ae_path: str | None = None,
|
88 |
+
text_enc_path: str | None = None,
|
89 |
+
text_enc_device: str | torch.device | None = None,
|
90 |
+
ae_device: str | torch.device | None = None,
|
91 |
+
flux_device: str | torch.device | None = None,
|
92 |
+
flow_dtype: str = "float16",
|
93 |
+
ae_dtype: str = "bfloat16",
|
94 |
+
text_enc_dtype: str = "bfloat16",
|
95 |
+
num_to_quant: Optional[int] = 20,
|
96 |
+
):
|
97 |
+
text_enc_device = str(parse_device(text_enc_device))
|
98 |
+
ae_device = str(parse_device(ae_device))
|
99 |
+
flux_device = str(parse_device(flux_device))
|
100 |
+
return ModelSpec(
|
101 |
+
version=name,
|
102 |
+
repo_id=(
|
103 |
+
"black-forest-labs/FLUX.1-dev"
|
104 |
+
if name == ModelVersion.flux_dev
|
105 |
+
else "black-forest-labs/FLUX.1-schnell"
|
106 |
+
),
|
107 |
+
repo_flow=(
|
108 |
+
"flux1-dev.sft" if name == ModelVersion.flux_dev else "flux1-schnell.sft"
|
109 |
+
),
|
110 |
+
repo_ae="ae.sft",
|
111 |
+
ckpt_path=flux_path,
|
112 |
+
params=FluxParams(
|
113 |
+
in_channels=64,
|
114 |
+
vec_in_dim=768,
|
115 |
+
context_in_dim=4096,
|
116 |
+
hidden_size=3072,
|
117 |
+
mlp_ratio=4.0,
|
118 |
+
num_heads=24,
|
119 |
+
depth=19,
|
120 |
+
depth_single_blocks=38,
|
121 |
+
axes_dim=[16, 56, 56],
|
122 |
+
theta=10_000,
|
123 |
+
qkv_bias=True,
|
124 |
+
guidance_embed=True,
|
125 |
+
),
|
126 |
+
ae_path=ae_path,
|
127 |
+
ae_params=AutoEncoderParams(
|
128 |
+
resolution=256,
|
129 |
+
in_channels=3,
|
130 |
+
ch=128,
|
131 |
+
out_ch=3,
|
132 |
+
ch_mult=[1, 2, 4, 4],
|
133 |
+
num_res_blocks=2,
|
134 |
+
z_channels=16,
|
135 |
+
scale_factor=0.3611,
|
136 |
+
shift_factor=0.1159,
|
137 |
+
),
|
138 |
+
text_enc_path=text_enc_path,
|
139 |
+
text_enc_device=text_enc_device,
|
140 |
+
ae_device=ae_device,
|
141 |
+
flux_device=flux_device,
|
142 |
+
flow_dtype=flow_dtype,
|
143 |
+
ae_dtype=ae_dtype,
|
144 |
+
text_enc_dtype=text_enc_dtype,
|
145 |
+
text_enc_max_length=512 if name == ModelVersion.flux_dev else 256,
|
146 |
+
num_to_quant=num_to_quant,
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
def load_config_from_path(path: str) -> ModelSpec:
|
151 |
+
path_path = Path(path)
|
152 |
+
if not path_path.exists():
|
153 |
+
raise ValueError(f"Path {path} does not exist")
|
154 |
+
if not path_path.is_file():
|
155 |
+
raise ValueError(f"Path {path} is not a file")
|
156 |
+
return ModelSpec(**json.loads(path_path.read_text()))
|
157 |
+
|
158 |
+
|
159 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
160 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
161 |
+
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
162 |
+
logger.warning("\n" + "-" * 79 + "\n")
|
163 |
+
logger.warning(
|
164 |
+
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
|
165 |
+
)
|
166 |
+
elif len(missing) > 0:
|
167 |
+
logger.warning(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
168 |
+
elif len(unexpected) > 0:
|
169 |
+
logger.warning(
|
170 |
+
f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
def load_flow_model(config: ModelSpec) -> Flux:
|
175 |
+
ckpt_path = config.ckpt_path
|
176 |
+
|
177 |
+
with torch.device("meta"):
|
178 |
+
model = Flux(config.params, dtype=into_dtype(config.flow_dtype)).type(
|
179 |
+
into_dtype(config.flow_dtype)
|
180 |
+
)
|
181 |
+
|
182 |
+
if ckpt_path is not None:
|
183 |
+
# load_sft doesn't support torch.device
|
184 |
+
sd = load_sft(ckpt_path, device="cpu")
|
185 |
+
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
|
186 |
+
print_load_warning(missing, unexpected)
|
187 |
+
return model
|
188 |
+
|
189 |
+
|
190 |
+
def load_text_encoders(config: ModelSpec) -> tuple[HFEmbedder, HFEmbedder]:
|
191 |
+
clip = HFEmbedder(
|
192 |
+
"openai/clip-vit-large-patch14",
|
193 |
+
max_length=77,
|
194 |
+
torch_dtype=into_dtype(config.text_enc_dtype),
|
195 |
+
device=into_device(config.text_enc_device),
|
196 |
+
)
|
197 |
+
t5 = HFEmbedder(
|
198 |
+
config.text_enc_path,
|
199 |
+
max_length=config.text_enc_max_length,
|
200 |
+
torch_dtype=into_dtype(config.text_enc_dtype),
|
201 |
+
device=into_device(config.text_enc_device).index or 0,
|
202 |
+
)
|
203 |
+
return clip, t5
|
204 |
+
|
205 |
+
|
206 |
+
def load_autoencoder(config: ModelSpec) -> AutoEncoder:
|
207 |
+
ckpt_path = config.ae_path
|
208 |
+
with torch.device("meta" if ckpt_path is not None else config.ae_device):
|
209 |
+
ae = AutoEncoder(config.ae_params)
|
210 |
+
|
211 |
+
if ckpt_path is not None:
|
212 |
+
sd = load_sft(ckpt_path, device=str(config.ae_device))
|
213 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
214 |
+
print_load_warning(missing, unexpected)
|
215 |
+
return ae
|
216 |
+
|
217 |
+
|
218 |
+
class LoadedModels(BaseModel):
|
219 |
+
flow: Flux
|
220 |
+
ae: AutoEncoder
|
221 |
+
clip: HFEmbedder
|
222 |
+
t5: HFEmbedder
|
223 |
+
config: ModelSpec
|
224 |
+
|
225 |
+
model_config = {
|
226 |
+
"arbitrary_types_allowed": True,
|
227 |
+
"use_enum_values": True,
|
228 |
+
}
|
229 |
+
|
230 |
+
|
231 |
+
def load_models_from_config_path(
|
232 |
+
path: str,
|
233 |
+
) -> LoadedModels:
|
234 |
+
config = load_config_from_path(path)
|
235 |
+
clip, t5 = load_text_encoders(config)
|
236 |
+
return LoadedModels(
|
237 |
+
flow=load_flow_model(config),
|
238 |
+
ae=load_autoencoder(config),
|
239 |
+
clip=clip,
|
240 |
+
t5=t5,
|
241 |
+
config=config,
|
242 |
+
)
|
243 |
+
|
244 |
+
|
245 |
+
def load_models_from_config(config: ModelSpec) -> LoadedModels:
|
246 |
+
clip, t5 = load_text_encoders(config)
|
247 |
+
return LoadedModels(
|
248 |
+
flow=load_flow_model(config),
|
249 |
+
ae=load_autoencoder(config),
|
250 |
+
clip=clip,
|
251 |
+
t5=t5,
|
252 |
+
config=config,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
if __name__ == "__main__":
|
257 |
+
p = "/big/generator-ui/flux-testing/flux/model-dir/flux1-dev.sft"
|
258 |
+
ae_p = "/big/generator-ui/flux-testing/flux/model-dir/ae.sft"
|
259 |
+
|
260 |
+
config = load_config(
|
261 |
+
ModelVersion.flux_dev,
|
262 |
+
flux_path=p,
|
263 |
+
ae_path=ae_p,
|
264 |
+
text_enc_path="city96/t5-v1_1-xxl-encoder-bf16",
|
265 |
+
text_enc_device="cuda:0",
|
266 |
+
ae_device="cuda:0",
|
267 |
+
flux_device="cuda:0",
|
268 |
+
flow_dtype="float16",
|
269 |
+
ae_dtype="bfloat16",
|
270 |
+
text_enc_dtype="bfloat16",
|
271 |
+
num_to_quant=20,
|
272 |
+
)
|
273 |
+
with open("configs/config-dev-cuda0.json", "w") as f:
|
274 |
+
json.dump(config.model_dump(), f, indent=2)
|
275 |
+
print(config)
|