import torch from cublas_ops import CublasLinear from loguru import logger from safetensors.torch import load_file from tqdm import tqdm from float8_quantize import F8Linear from modules.flux_model import Flux def swap_scale_shift(weight): scale, shift = weight.chunk(2, dim=0) new_weight = torch.cat([shift, scale], dim=0) return new_weight def check_if_lora_exists(state_dict, lora_name): subkey = lora_name.split(".lora_A")[0].split(".lora_B")[0].split(".weight")[0] for key in state_dict.keys(): if subkey in key: return subkey return False def convert_if_lora_exists(new_state_dict, state_dict, lora_name, flux_layer_name): if (original_stubkey := check_if_lora_exists(state_dict, lora_name)) != False: weights_to_pop = [k for k in state_dict.keys() if original_stubkey in k] for key in weights_to_pop: key_replacement = key.replace( original_stubkey, flux_layer_name.replace(".weight", "") ) new_state_dict[key_replacement] = state_dict.pop(key) return new_state_dict, state_dict else: return new_state_dict, state_dict def convert_diffusers_to_flux_transformer_checkpoint( diffusers_state_dict, num_layers, num_single_layers, has_guidance=True, prefix="", ): original_state_dict = {} # time_text_embed.timestep_embedder -> time_in original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}time_text_embed.timestep_embedder.linear_1.weight", "time_in.in_layer.weight", ) # time_text_embed.text_embedder -> vector_in original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}time_text_embed.text_embedder.linear_1.weight", "vector_in.in_layer.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}time_text_embed.text_embedder.linear_2.weight", "vector_in.out_layer.weight", ) if has_guidance: original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}time_text_embed.guidance_embedder.linear_1.weight", "guidance_in.in_layer.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}time_text_embed.guidance_embedder.linear_2.weight", "guidance_in.out_layer.weight", ) # context_embedder -> txt_in original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}context_embedder.weight", "txt_in.weight", ) # x_embedder -> img_in original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}x_embedder.weight", "img_in.weight", ) # double transformer blocks for i in range(num_layers): block_prefix = f"transformer_blocks.{i}." # norms original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}norm1.linear.weight", f"double_blocks.{i}.img_mod.lin.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}norm1_context.linear.weight", f"double_blocks.{i}.txt_mod.lin.weight", ) sample_q_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.to_q.lora_A.weight" ) sample_q_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.to_q.lora_B.weight" ) sample_k_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.to_k.lora_A.weight" ) sample_k_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.to_k.lora_B.weight" ) sample_v_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.to_v.lora_A.weight" ) sample_v_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.to_v.lora_B.weight" ) context_q_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.add_q_proj.lora_A.weight" ) context_q_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.add_q_proj.lora_B.weight" ) context_k_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.add_k_proj.lora_A.weight" ) context_k_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.add_k_proj.lora_B.weight" ) context_v_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.add_v_proj.lora_A.weight" ) context_v_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}attn.add_v_proj.lora_B.weight" ) original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_A.weight"] = ( torch.cat([sample_q_A, sample_k_A, sample_v_A], dim=0) ) original_state_dict[f"double_blocks.{i}.img_attn.qkv.lora_B.weight"] = ( torch.cat([sample_q_B, sample_k_B, sample_v_B], dim=0) ) original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_A.weight"] = ( torch.cat([context_q_A, context_k_A, context_v_A], dim=0) ) original_state_dict[f"double_blocks.{i}.txt_attn.qkv.lora_B.weight"] = ( torch.cat([context_q_B, context_k_B, context_v_B], dim=0) ) # qk_norm original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}attn.norm_q.weight", f"double_blocks.{i}.img_attn.norm.query_norm.scale", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}attn.norm_k.weight", f"double_blocks.{i}.img_attn.norm.key_norm.scale", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}attn.norm_added_q.weight", f"double_blocks.{i}.txt_attn.norm.query_norm.scale", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}attn.norm_added_k.weight", f"double_blocks.{i}.txt_attn.norm.key_norm.scale", ) # ff img_mlp original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}ff.net.0.proj.weight", f"double_blocks.{i}.img_mlp.0.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}ff.net.2.weight", f"double_blocks.{i}.img_mlp.2.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}ff_context.net.0.proj.weight", f"double_blocks.{i}.txt_mlp.0.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}ff_context.net.2.weight", f"double_blocks.{i}.txt_mlp.2.weight", ) # output projections original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}attn.to_out.0.weight", f"double_blocks.{i}.img_attn.proj.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}attn.to_add_out.weight", f"double_blocks.{i}.txt_attn.proj.weight", ) # single transformer blocks for i in range(num_single_layers): block_prefix = f"single_transformer_blocks.{i}." # norm.linear -> single_blocks.0.modulation.lin original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}norm.linear.weight", f"single_blocks.{i}.modulation.lin.weight", ) # Q, K, V, mlp q_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_A.weight") q_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_q.lora_B.weight") k_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_A.weight") k_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_k.lora_B.weight") v_A = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_A.weight") v_B = diffusers_state_dict.pop(f"{prefix}{block_prefix}attn.to_v.lora_B.weight") mlp_A = diffusers_state_dict.pop( f"{prefix}{block_prefix}proj_mlp.lora_A.weight" ) mlp_B = diffusers_state_dict.pop( f"{prefix}{block_prefix}proj_mlp.lora_B.weight" ) original_state_dict[f"single_blocks.{i}.linear1.lora_A.weight"] = torch.cat( [q_A, k_A, v_A, mlp_A], dim=0 ) original_state_dict[f"single_blocks.{i}.linear1.lora_B.weight"] = torch.cat( [q_B, k_B, v_B, mlp_B], dim=0 ) # output projections original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}{block_prefix}proj_out.weight", f"single_blocks.{i}.linear2.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}proj_out.weight", "final_layer.linear.weight", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}proj_out.bias", "final_layer.linear.bias", ) original_state_dict, diffusers_state_dict = convert_if_lora_exists( original_state_dict, diffusers_state_dict, f"{prefix}norm_out.linear.weight", "final_layer.adaLN_modulation.1.weight", ) if len(list(diffusers_state_dict.keys())) > 0: logger.warning("Unexpected keys:", diffusers_state_dict.keys()) return original_state_dict def convert_from_original_flux_checkpoint( original_state_dict, ): sd = { k.replace("lora_unet_", "") .replace("double_blocks_", "double_blocks.") .replace("single_blocks_", "single_blocks.") .replace("_img_attn_", ".img_attn.") .replace("_txt_attn_", ".txt_attn.") .replace("_img_mod_", ".img_mod.") .replace("_txt_mod_", ".txt_mod.") .replace("_img_mlp_", ".img_mlp.") .replace("_txt_mlp_", ".txt_mlp.") .replace("_linear1", ".linear1") .replace("_linear2", ".linear2") .replace("_modulation_", ".modulation.") .replace("lora_up", "lora_B") .replace("lora_down", "lora_A"): v for k, v in original_state_dict.items() if "lora" in k } return sd def get_module_for_key( key: str, model: Flux ) -> F8Linear | torch.nn.Linear | CublasLinear: parts = key.split(".") module = model for part in parts: module = getattr(module, part) return module def get_lora_for_key(key: str, lora_weights: dict): prefix = key.split(".lora")[0] lora_A = lora_weights[f"{prefix}.lora_A.weight"] lora_B = lora_weights[f"{prefix}.lora_B.weight"] alpha = lora_weights.get(f"{prefix}.alpha", 1.0) return lora_A, lora_B, alpha @torch.inference_mode() def apply_lora_weight_to_module( module_weight: torch.Tensor, lora_weights: dict, rank: int = None, lora_scale: float = 1.0, ): lora_A, lora_B, alpha = lora_weights uneven_rank = lora_B.shape[1] != lora_A.shape[0] rank_diff = lora_A.shape[0] / lora_B.shape[1] if rank is None: rank = lora_B.shape[1] else: rank = rank if alpha is None: alpha = rank else: alpha = alpha w_dtype = module_weight.dtype dtype = torch.float32 device = module_weight.device w_orig = module_weight.to(dtype=dtype, device=device) w_up = lora_A.to(dtype=dtype, device=device) w_down = lora_B.to(dtype=dtype, device=device) # if not from_original_flux: if alpha != rank: w_up = w_up * alpha / rank if uneven_rank: fused_lora = lora_scale * torch.mm( w_down.repeat_interleave(int(rank_diff), dim=1), w_up ) else: fused_lora = lora_scale * torch.mm(w_down, w_up) fused_weight = w_orig + fused_lora return fused_weight.to(dtype=w_dtype, device=device) @torch.inference_mode() def apply_lora_to_model(model: Flux, lora_path: str, lora_scale: float = 1.0): has_guidance = model.params.guidance_embed logger.info(f"Loading LoRA weights for {lora_path}") lora_weights = load_file(lora_path) from_original_flux = False check_if_starts_with_transformer = [ k for k in lora_weights.keys() if k.startswith("transformer.") ] if len(check_if_starts_with_transformer) > 0: lora_weights = convert_diffusers_to_flux_transformer_checkpoint( lora_weights, 19, 38, has_guidance=has_guidance, prefix="transformer." ) else: from_original_flux = True lora_weights = convert_from_original_flux_checkpoint(lora_weights) logger.info("LoRA weights loaded") logger.debug("Extracting keys") keys_without_ab = [ key.replace(".lora_A.weight", "") .replace(".lora_B.weight", "") .replace(".alpha", "") for key in lora_weights.keys() ] logger.debug("Keys extracted") keys_without_ab = list(set(keys_without_ab)) if len(keys_without_ab) > 0: logger.warning("Missing unconverted state dict keys!", len(keys_without_ab)) for key in tqdm(keys_without_ab, desc="Applying LoRA", total=len(keys_without_ab)): module = get_module_for_key(key, model) dtype = model.dtype weight_is_f8 = False if isinstance(module, F8Linear): weight_is_f8 = True weight_f16 = ( module.float8_data.clone() .detach() .float() .mul(module.scale_reciprocal) .to(module.weight.device) ) elif isinstance(module, torch.nn.Linear): weight_f16 = module.weight.clone().detach().float() elif isinstance(module, CublasLinear): weight_f16 = module.weight.clone().detach().float() lora_sd = get_lora_for_key(key, lora_weights) weight_f16 = apply_lora_weight_to_module( weight_f16, lora_sd, lora_scale=lora_scale, from_original_flux=from_original_flux, ) if weight_is_f8: module.set_weight_tensor(weight_f16.type(dtype)) else: module.weight.data = weight_f16.type(dtype) logger.success("Lora applied") return model