File size: 34,075 Bytes
37ab8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
044cfcb
37ab8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Aku sudah lebih tua dan hidupku sangat berbeda. Aku bisa merasakan betapa
    takjubnya aku pagi itu
- text: Saya merasa cukup href http kata-kata yang tak terucapkan disimpan di dalam
- text: Aku melihat ke dalam dompetku dan aku merasakan hawa dingin
- text: Aku menurunkan Erik dengan perasaan agak tidak puas dengan malam itu
- text: Aku bertanya-tanya apa yang siswa lain di kelasku rasakan ketika aku tidak
    takut untuk memberikan jawaban di luar sana
pipeline_tag: text-classification
inference: true
base_model: firqaaa/indo-sentence-bert-base
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: firqaaa/emotion-bahasa
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.718
      name: Accuracy
---

# SetFit with firqaaa/indo-sentence-bert-base

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|:----------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kesedihan | <ul><li>'Saya merasa agak kecewa, saya rasa harus menyerahkan sesuatu yang tidak menarik hanya untuk memenuhi tenggat waktu'</li><li>'Aku merasa seperti aku telah cukup lalai terhadap blogku dan aku hanya mengatakan bahwa kita di sini hidup dan bahagia'</li><li>'Aku tahu dan aku selalu terkoyak karenanya karena aku merasa tidak berdaya dan tidak berguna'</li></ul>                                                                  |
| sukacita  | <ul><li>'aku mungkin tidak merasa begitu keren'</li><li>'saya merasa baik-baik saja'</li><li>'saya merasa seperti saya seorang ibu dengan mengorbankan produktivitas'</li></ul>                                                                                                                                                                                                                                                                 |
| cinta     | <ul><li>'aku merasa mencintaimu'</li><li>'aku akan merasa sangat nostalgia di usia yang begitu muda'</li><li>'Saya merasa diberkati bahwa saya tinggal di Amerika memiliki keluarga yang luar biasa dan Dorothy Kelsey adalah bagian dari hidup saya'</li></ul>                                                                                                                                                                                 |
| amarah    | <ul><li>'Aku terlalu memikirkan cara dudukku, suaraku terdengar jika ada makanan di mulutku, dan perasaan bahwa aku harus berjalan ke semua orang agar tidak bersikap kasar'</li><li>'aku merasa memberontak sedikit kesal gila terkurung'</li><li>'Aku merasakan perasaan itu muncul kembali dari perasaan paranoid dan cemburu yang penuh kebencian yang selalu menyiksaku tanpa henti'</li></ul>                                             |
| takut     | <ul><li>'aku merasa seperti diserang oleh landak titanium'</li><li>'Aku membiarkan diriku memikirkan perilakuku terhadapmu saat kita masih kecil. Aku merasakan campuran aneh antara rasa bersalah dan kekaguman atas ketangguhanmu'</li><li>'saya marah karena majikan saya tidak berinvestasi pada kami sama sekali, gaji pelatihan, kenaikan hari libur bank dan rasanya seperti ketidakadilan sehingga saya merasa tidak berdaya'</li></ul> |
| kejutan   | <ul><li>'Aku membaca bagian ol feefyefo Aku merasa takjub melihat betapa aku bisa mengoceh dan betapa transparannya aku dalam hidupku'</li><li>'saya menemukan seni di sisi lain saya merasa sangat terkesan dengan karya saya'</li><li>'aku merasa penasaran, bersemangat dan tidak sabar'</li></ul>                                                                                                                                           |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.718    |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("firqaaa/indo-setfit-bert-base-p3")
# Run inference
preds = model("Aku melihat ke dalam dompetku dan aku merasakan hawa dingin")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 2   | 16.7928 | 56  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| kesedihan | 300                   |
| sukacita  | 300                   |
| cinta     | 300                   |
| amarah    | 300                   |
| takut     | 300                   |
| kejutan   | 300                   |

### Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step      | Training Loss | Validation Loss |
|:-------:|:---------:|:-------------:|:---------------:|
| 0.0000  | 1         | 0.2927        | -               |
| 0.0024  | 50        | 0.2605        | -               |
| 0.0047  | 100       | 0.2591        | -               |
| 0.0071  | 150       | 0.2638        | -               |
| 0.0095  | 200       | 0.245         | -               |
| 0.0119  | 250       | 0.226         | -               |
| 0.0142  | 300       | 0.222         | -               |
| 0.0166  | 350       | 0.1968        | -               |
| 0.0190  | 400       | 0.1703        | -               |
| 0.0213  | 450       | 0.1703        | -               |
| 0.0237  | 500       | 0.1587        | -               |
| 0.0261  | 550       | 0.1087        | -               |
| 0.0284  | 600       | 0.1203        | -               |
| 0.0308  | 650       | 0.0844        | -               |
| 0.0332  | 700       | 0.0696        | -               |
| 0.0356  | 750       | 0.0606        | -               |
| 0.0379  | 800       | 0.0333        | -               |
| 0.0403  | 850       | 0.0453        | -               |
| 0.0427  | 900       | 0.033         | -               |
| 0.0450  | 950       | 0.0142        | -               |
| 0.0474  | 1000      | 0.004         | -               |
| 0.0498  | 1050      | 0.0097        | -               |
| 0.0521  | 1100      | 0.0065        | -               |
| 0.0545  | 1150      | 0.0081        | -               |
| 0.0569  | 1200      | 0.0041        | -               |
| 0.0593  | 1250      | 0.0044        | -               |
| 0.0616  | 1300      | 0.0013        | -               |
| 0.0640  | 1350      | 0.0024        | -               |
| 0.0664  | 1400      | 0.001         | -               |
| 0.0687  | 1450      | 0.0012        | -               |
| 0.0711  | 1500      | 0.0013        | -               |
| 0.0735  | 1550      | 0.0006        | -               |
| 0.0759  | 1600      | 0.0033        | -               |
| 0.0782  | 1650      | 0.0006        | -               |
| 0.0806  | 1700      | 0.0013        | -               |
| 0.0830  | 1750      | 0.0008        | -               |
| 0.0853  | 1800      | 0.0006        | -               |
| 0.0877  | 1850      | 0.0008        | -               |
| 0.0901  | 1900      | 0.0004        | -               |
| 0.0924  | 1950      | 0.0005        | -               |
| 0.0948  | 2000      | 0.0004        | -               |
| 0.0972  | 2050      | 0.0002        | -               |
| 0.0996  | 2100      | 0.0002        | -               |
| 0.1019  | 2150      | 0.0003        | -               |
| 0.1043  | 2200      | 0.0006        | -               |
| 0.1067  | 2250      | 0.0005        | -               |
| 0.1090  | 2300      | 0.0003        | -               |
| 0.1114  | 2350      | 0.0018        | -               |
| 0.1138  | 2400      | 0.0003        | -               |
| 0.1161  | 2450      | 0.0002        | -               |
| 0.1185  | 2500      | 0.0018        | -               |
| 0.1209  | 2550      | 0.0003        | -               |
| 0.1233  | 2600      | 0.0008        | -               |
| 0.1256  | 2650      | 0.0002        | -               |
| 0.1280  | 2700      | 0.0007        | -               |
| 0.1304  | 2750      | 0.006         | -               |
| 0.1327  | 2800      | 0.0002        | -               |
| 0.1351  | 2850      | 0.0001        | -               |
| 0.1375  | 2900      | 0.0001        | -               |
| 0.1399  | 2950      | 0.0001        | -               |
| 0.1422  | 3000      | 0.0001        | -               |
| 0.1446  | 3050      | 0.0001        | -               |
| 0.1470  | 3100      | 0.0001        | -               |
| 0.1493  | 3150      | 0.0001        | -               |
| 0.1517  | 3200      | 0.0002        | -               |
| 0.1541  | 3250      | 0.0003        | -               |
| 0.1564  | 3300      | 0.0004        | -               |
| 0.1588  | 3350      | 0.0001        | -               |
| 0.1612  | 3400      | 0.0001        | -               |
| 0.1636  | 3450      | 0.0014        | -               |
| 0.1659  | 3500      | 0.0005        | -               |
| 0.1683  | 3550      | 0.0003        | -               |
| 0.1707  | 3600      | 0.0001        | -               |
| 0.1730  | 3650      | 0.0001        | -               |
| 0.1754  | 3700      | 0.0001        | -               |
| 0.1778  | 3750      | 0.0001        | -               |
| 0.1801  | 3800      | 0.0001        | -               |
| 0.1825  | 3850      | 0.0001        | -               |
| 0.1849  | 3900      | 0.0001        | -               |
| 0.1873  | 3950      | 0.0001        | -               |
| 0.1896  | 4000      | 0.0001        | -               |
| 0.1920  | 4050      | 0.0001        | -               |
| 0.1944  | 4100      | 0.0003        | -               |
| 0.1967  | 4150      | 0.0006        | -               |
| 0.1991  | 4200      | 0.0001        | -               |
| 0.2015  | 4250      | 0.0           | -               |
| 0.2038  | 4300      | 0.0           | -               |
| 0.2062  | 4350      | 0.0001        | -               |
| 0.2086  | 4400      | 0.0           | -               |
| 0.2110  | 4450      | 0.0           | -               |
| 0.2133  | 4500      | 0.0001        | -               |
| 0.2157  | 4550      | 0.0002        | -               |
| 0.2181  | 4600      | 0.0003        | -               |
| 0.2204  | 4650      | 0.0018        | -               |
| 0.2228  | 4700      | 0.0003        | -               |
| 0.2252  | 4750      | 0.0145        | -               |
| 0.2276  | 4800      | 0.0001        | -               |
| 0.2299  | 4850      | 0.0006        | -               |
| 0.2323  | 4900      | 0.0001        | -               |
| 0.2347  | 4950      | 0.0007        | -               |
| 0.2370  | 5000      | 0.0001        | -               |
| 0.2394  | 5050      | 0.0           | -               |
| 0.2418  | 5100      | 0.0           | -               |
| 0.2441  | 5150      | 0.0001        | -               |
| 0.2465  | 5200      | 0.0003        | -               |
| 0.2489  | 5250      | 0.0           | -               |
| 0.2513  | 5300      | 0.0           | -               |
| 0.2536  | 5350      | 0.0           | -               |
| 0.2560  | 5400      | 0.0           | -               |
| 0.2584  | 5450      | 0.0004        | -               |
| 0.2607  | 5500      | 0.0           | -               |
| 0.2631  | 5550      | 0.0           | -               |
| 0.2655  | 5600      | 0.0           | -               |
| 0.2678  | 5650      | 0.0           | -               |
| 0.2702  | 5700      | 0.0           | -               |
| 0.2726  | 5750      | 0.0002        | -               |
| 0.2750  | 5800      | 0.0           | -               |
| 0.2773  | 5850      | 0.0           | -               |
| 0.2797  | 5900      | 0.0           | -               |
| 0.2821  | 5950      | 0.0           | -               |
| 0.2844  | 6000      | 0.0           | -               |
| 0.2868  | 6050      | 0.0           | -               |
| 0.2892  | 6100      | 0.0           | -               |
| 0.2916  | 6150      | 0.0           | -               |
| 0.2939  | 6200      | 0.0           | -               |
| 0.2963  | 6250      | 0.0           | -               |
| 0.2987  | 6300      | 0.0001        | -               |
| 0.3010  | 6350      | 0.0003        | -               |
| 0.3034  | 6400      | 0.0048        | -               |
| 0.3058  | 6450      | 0.0           | -               |
| 0.3081  | 6500      | 0.0           | -               |
| 0.3105  | 6550      | 0.0           | -               |
| 0.3129  | 6600      | 0.0           | -               |
| 0.3153  | 6650      | 0.0           | -               |
| 0.3176  | 6700      | 0.0           | -               |
| 0.3200  | 6750      | 0.0           | -               |
| 0.3224  | 6800      | 0.0           | -               |
| 0.3247  | 6850      | 0.0           | -               |
| 0.3271  | 6900      | 0.0           | -               |
| 0.3295  | 6950      | 0.0           | -               |
| 0.3318  | 7000      | 0.0           | -               |
| 0.3342  | 7050      | 0.0           | -               |
| 0.3366  | 7100      | 0.0           | -               |
| 0.3390  | 7150      | 0.0011        | -               |
| 0.3413  | 7200      | 0.0002        | -               |
| 0.3437  | 7250      | 0.0           | -               |
| 0.3461  | 7300      | 0.0           | -               |
| 0.3484  | 7350      | 0.0001        | -               |
| 0.3508  | 7400      | 0.0001        | -               |
| 0.3532  | 7450      | 0.0002        | -               |
| 0.3556  | 7500      | 0.0           | -               |
| 0.3579  | 7550      | 0.0           | -               |
| 0.3603  | 7600      | 0.0           | -               |
| 0.3627  | 7650      | 0.0           | -               |
| 0.3650  | 7700      | 0.0           | -               |
| 0.3674  | 7750      | 0.0           | -               |
| 0.3698  | 7800      | 0.0001        | -               |
| 0.3721  | 7850      | 0.0           | -               |
| 0.3745  | 7900      | 0.0           | -               |
| 0.3769  | 7950      | 0.0           | -               |
| 0.3793  | 8000      | 0.0           | -               |
| 0.3816  | 8050      | 0.0           | -               |
| 0.3840  | 8100      | 0.0           | -               |
| 0.3864  | 8150      | 0.0           | -               |
| 0.3887  | 8200      | 0.0           | -               |
| 0.3911  | 8250      | 0.0           | -               |
| 0.3935  | 8300      | 0.0           | -               |
| 0.3958  | 8350      | 0.0           | -               |
| 0.3982  | 8400      | 0.0           | -               |
| 0.4006  | 8450      | 0.0           | -               |
| 0.4030  | 8500      | 0.0           | -               |
| 0.4053  | 8550      | 0.0001        | -               |
| 0.4077  | 8600      | 0.0001        | -               |
| 0.4101  | 8650      | 0.0008        | -               |
| 0.4124  | 8700      | 0.0001        | -               |
| 0.4148  | 8750      | 0.0           | -               |
| 0.4172  | 8800      | 0.0           | -               |
| 0.4196  | 8850      | 0.0001        | -               |
| 0.4219  | 8900      | 0.0           | -               |
| 0.4243  | 8950      | 0.0           | -               |
| 0.4267  | 9000      | 0.0           | -               |
| 0.4290  | 9050      | 0.0           | -               |
| 0.4314  | 9100      | 0.0           | -               |
| 0.4338  | 9150      | 0.0           | -               |
| 0.4361  | 9200      | 0.0           | -               |
| 0.4385  | 9250      | 0.0           | -               |
| 0.4409  | 9300      | 0.0           | -               |
| 0.4433  | 9350      | 0.0           | -               |
| 0.4456  | 9400      | 0.0           | -               |
| 0.4480  | 9450      | 0.0           | -               |
| 0.4504  | 9500      | 0.0           | -               |
| 0.4527  | 9550      | 0.0           | -               |
| 0.4551  | 9600      | 0.0           | -               |
| 0.4575  | 9650      | 0.0           | -               |
| 0.4598  | 9700      | 0.0           | -               |
| 0.4622  | 9750      | 0.0001        | -               |
| 0.4646  | 9800      | 0.0           | -               |
| 0.4670  | 9850      | 0.0           | -               |
| 0.4693  | 9900      | 0.0           | -               |
| 0.4717  | 9950      | 0.0           | -               |
| 0.4741  | 10000     | 0.0           | -               |
| 0.4764  | 10050     | 0.0           | -               |
| 0.4788  | 10100     | 0.0006        | -               |
| 0.4812  | 10150     | 0.0           | -               |
| 0.4835  | 10200     | 0.0           | -               |
| 0.4859  | 10250     | 0.0           | -               |
| 0.4883  | 10300     | 0.0           | -               |
| 0.4907  | 10350     | 0.0           | -               |
| 0.4930  | 10400     | 0.0           | -               |
| 0.4954  | 10450     | 0.0           | -               |
| 0.4978  | 10500     | 0.0           | -               |
| 0.5001  | 10550     | 0.0           | -               |
| 0.5025  | 10600     | 0.0           | -               |
| 0.5049  | 10650     | 0.0           | -               |
| 0.5073  | 10700     | 0.0           | -               |
| 0.5096  | 10750     | 0.0           | -               |
| 0.5120  | 10800     | 0.0           | -               |
| 0.5144  | 10850     | 0.0           | -               |
| 0.5167  | 10900     | 0.0           | -               |
| 0.5191  | 10950     | 0.0           | -               |
| 0.5215  | 11000     | 0.0           | -               |
| 0.5238  | 11050     | 0.0           | -               |
| 0.5262  | 11100     | 0.0           | -               |
| 0.5286  | 11150     | 0.0           | -               |
| 0.5310  | 11200     | 0.0           | -               |
| 0.5333  | 11250     | 0.0           | -               |
| 0.5357  | 11300     | 0.0           | -               |
| 0.5381  | 11350     | 0.0           | -               |
| 0.5404  | 11400     | 0.0           | -               |
| 0.5428  | 11450     | 0.0           | -               |
| 0.5452  | 11500     | 0.0           | -               |
| 0.5475  | 11550     | 0.0           | -               |
| 0.5499  | 11600     | 0.0           | -               |
| 0.5523  | 11650     | 0.0001        | -               |
| 0.5547  | 11700     | 0.0           | -               |
| 0.5570  | 11750     | 0.0043        | -               |
| 0.5594  | 11800     | 0.0           | -               |
| 0.5618  | 11850     | 0.0           | -               |
| 0.5641  | 11900     | 0.0           | -               |
| 0.5665  | 11950     | 0.0           | -               |
| 0.5689  | 12000     | 0.0           | -               |
| 0.5713  | 12050     | 0.0           | -               |
| 0.5736  | 12100     | 0.0           | -               |
| 0.5760  | 12150     | 0.0           | -               |
| 0.5784  | 12200     | 0.0           | -               |
| 0.5807  | 12250     | 0.0029        | -               |
| 0.5831  | 12300     | 0.0           | -               |
| 0.5855  | 12350     | 0.0           | -               |
| 0.5878  | 12400     | 0.0           | -               |
| 0.5902  | 12450     | 0.0           | -               |
| 0.5926  | 12500     | 0.0           | -               |
| 0.5950  | 12550     | 0.0           | -               |
| 0.5973  | 12600     | 0.0           | -               |
| 0.5997  | 12650     | 0.0           | -               |
| 0.6021  | 12700     | 0.0           | -               |
| 0.6044  | 12750     | 0.0           | -               |
| 0.6068  | 12800     | 0.0           | -               |
| 0.6092  | 12850     | 0.0           | -               |
| 0.6115  | 12900     | 0.0           | -               |
| 0.6139  | 12950     | 0.0           | -               |
| 0.6163  | 13000     | 0.0           | -               |
| 0.6187  | 13050     | 0.0           | -               |
| 0.6210  | 13100     | 0.0           | -               |
| 0.6234  | 13150     | 0.0001        | -               |
| 0.6258  | 13200     | 0.0           | -               |
| 0.6281  | 13250     | 0.0           | -               |
| 0.6305  | 13300     | 0.0           | -               |
| 0.6329  | 13350     | 0.0           | -               |
| 0.6353  | 13400     | 0.0001        | -               |
| 0.6376  | 13450     | 0.0           | -               |
| 0.6400  | 13500     | 0.0           | -               |
| 0.6424  | 13550     | 0.0           | -               |
| 0.6447  | 13600     | 0.0           | -               |
| 0.6471  | 13650     | 0.0           | -               |
| 0.6495  | 13700     | 0.0           | -               |
| 0.6518  | 13750     | 0.0           | -               |
| 0.6542  | 13800     | 0.0           | -               |
| 0.6566  | 13850     | 0.0           | -               |
| 0.6590  | 13900     | 0.0           | -               |
| 0.6613  | 13950     | 0.0           | -               |
| 0.6637  | 14000     | 0.0           | -               |
| 0.6661  | 14050     | 0.0           | -               |
| 0.6684  | 14100     | 0.0           | -               |
| 0.6708  | 14150     | 0.0           | -               |
| 0.6732  | 14200     | 0.0           | -               |
| 0.6755  | 14250     | 0.0           | -               |
| 0.6779  | 14300     | 0.0           | -               |
| 0.6803  | 14350     | 0.0           | -               |
| 0.6827  | 14400     | 0.0           | -               |
| 0.6850  | 14450     | 0.0           | -               |
| 0.6874  | 14500     | 0.0           | -               |
| 0.6898  | 14550     | 0.0           | -               |
| 0.6921  | 14600     | 0.0           | -               |
| 0.6945  | 14650     | 0.0           | -               |
| 0.6969  | 14700     | 0.0           | -               |
| 0.6993  | 14750     | 0.0           | -               |
| 0.7016  | 14800     | 0.0           | -               |
| 0.7040  | 14850     | 0.0           | -               |
| 0.7064  | 14900     | 0.0           | -               |
| 0.7087  | 14950     | 0.0           | -               |
| 0.7111  | 15000     | 0.0           | -               |
| 0.7135  | 15050     | 0.0           | -               |
| 0.7158  | 15100     | 0.0           | -               |
| 0.7182  | 15150     | 0.0           | -               |
| 0.7206  | 15200     | 0.0           | -               |
| 0.7230  | 15250     | 0.0           | -               |
| 0.7253  | 15300     | 0.0           | -               |
| 0.7277  | 15350     | 0.0           | -               |
| 0.7301  | 15400     | 0.0           | -               |
| 0.7324  | 15450     | 0.0           | -               |
| 0.7348  | 15500     | 0.0           | -               |
| 0.7372  | 15550     | 0.0           | -               |
| 0.7395  | 15600     | 0.0           | -               |
| 0.7419  | 15650     | 0.0           | -               |
| 0.7443  | 15700     | 0.0           | -               |
| 0.7467  | 15750     | 0.0           | -               |
| 0.7490  | 15800     | 0.0           | -               |
| 0.7514  | 15850     | 0.0           | -               |
| 0.7538  | 15900     | 0.0           | -               |
| 0.7561  | 15950     | 0.0           | -               |
| 0.7585  | 16000     | 0.0           | -               |
| 0.7609  | 16050     | 0.0           | -               |
| 0.7633  | 16100     | 0.0           | -               |
| 0.7656  | 16150     | 0.0           | -               |
| 0.7680  | 16200     | 0.0           | -               |
| 0.7704  | 16250     | 0.0           | -               |
| 0.7727  | 16300     | 0.0           | -               |
| 0.7751  | 16350     | 0.0           | -               |
| 0.7775  | 16400     | 0.0           | -               |
| 0.7798  | 16450     | 0.0           | -               |
| 0.7822  | 16500     | 0.0           | -               |
| 0.7846  | 16550     | 0.0           | -               |
| 0.7870  | 16600     | 0.0           | -               |
| 0.7893  | 16650     | 0.0           | -               |
| 0.7917  | 16700     | 0.0           | -               |
| 0.7941  | 16750     | 0.0           | -               |
| 0.7964  | 16800     | 0.0           | -               |
| 0.7988  | 16850     | 0.0           | -               |
| 0.8012  | 16900     | 0.0           | -               |
| 0.8035  | 16950     | 0.0           | -               |
| 0.8059  | 17000     | 0.0           | -               |
| 0.8083  | 17050     | 0.0           | -               |
| 0.8107  | 17100     | 0.0           | -               |
| 0.8130  | 17150     | 0.0           | -               |
| 0.8154  | 17200     | 0.0           | -               |
| 0.8178  | 17250     | 0.0           | -               |
| 0.8201  | 17300     | 0.0           | -               |
| 0.8225  | 17350     | 0.0           | -               |
| 0.8249  | 17400     | 0.0           | -               |
| 0.8272  | 17450     | 0.0           | -               |
| 0.8296  | 17500     | 0.0           | -               |
| 0.8320  | 17550     | 0.0           | -               |
| 0.8344  | 17600     | 0.0           | -               |
| 0.8367  | 17650     | 0.0           | -               |
| 0.8391  | 17700     | 0.0           | -               |
| 0.8415  | 17750     | 0.0           | -               |
| 0.8438  | 17800     | 0.0           | -               |
| 0.8462  | 17850     | 0.0           | -               |
| 0.8486  | 17900     | 0.0           | -               |
| 0.8510  | 17950     | 0.0           | -               |
| 0.8533  | 18000     | 0.0           | -               |
| 0.8557  | 18050     | 0.0           | -               |
| 0.8581  | 18100     | 0.0           | -               |
| 0.8604  | 18150     | 0.0           | -               |
| 0.8628  | 18200     | 0.0           | -               |
| 0.8652  | 18250     | 0.0           | -               |
| 0.8675  | 18300     | 0.0           | -               |
| 0.8699  | 18350     | 0.0           | -               |
| 0.8723  | 18400     | 0.0           | -               |
| 0.8747  | 18450     | 0.0           | -               |
| 0.8770  | 18500     | 0.0           | -               |
| 0.8794  | 18550     | 0.0           | -               |
| 0.8818  | 18600     | 0.0           | -               |
| 0.8841  | 18650     | 0.0           | -               |
| 0.8865  | 18700     | 0.0           | -               |
| 0.8889  | 18750     | 0.0           | -               |
| 0.8912  | 18800     | 0.0           | -               |
| 0.8936  | 18850     | 0.0           | -               |
| 0.8960  | 18900     | 0.0           | -               |
| 0.8984  | 18950     | 0.0           | -               |
| 0.9007  | 19000     | 0.0           | -               |
| 0.9031  | 19050     | 0.0           | -               |
| 0.9055  | 19100     | 0.0           | -               |
| 0.9078  | 19150     | 0.0           | -               |
| 0.9102  | 19200     | 0.0           | -               |
| 0.9126  | 19250     | 0.0           | -               |
| 0.9150  | 19300     | 0.0           | -               |
| 0.9173  | 19350     | 0.0           | -               |
| 0.9197  | 19400     | 0.0           | -               |
| 0.9221  | 19450     | 0.0           | -               |
| 0.9244  | 19500     | 0.0           | -               |
| 0.9268  | 19550     | 0.0           | -               |
| 0.9292  | 19600     | 0.0           | -               |
| 0.9315  | 19650     | 0.0           | -               |
| 0.9339  | 19700     | 0.0           | -               |
| 0.9363  | 19750     | 0.0           | -               |
| 0.9387  | 19800     | 0.0           | -               |
| 0.9410  | 19850     | 0.0           | -               |
| 0.9434  | 19900     | 0.0           | -               |
| 0.9458  | 19950     | 0.0           | -               |
| 0.9481  | 20000     | 0.0           | -               |
| 0.9505  | 20050     | 0.0           | -               |
| 0.9529  | 20100     | 0.0           | -               |
| 0.9552  | 20150     | 0.0           | -               |
| 0.9576  | 20200     | 0.0           | -               |
| 0.9600  | 20250     | 0.0           | -               |
| 0.9624  | 20300     | 0.0           | -               |
| 0.9647  | 20350     | 0.0           | -               |
| 0.9671  | 20400     | 0.0           | -               |
| 0.9695  | 20450     | 0.0           | -               |
| 0.9718  | 20500     | 0.0           | -               |
| 0.9742  | 20550     | 0.0           | -               |
| 0.9766  | 20600     | 0.0           | -               |
| 0.9790  | 20650     | 0.0           | -               |
| 0.9813  | 20700     | 0.0           | -               |
| 0.9837  | 20750     | 0.0           | -               |
| 0.9861  | 20800     | 0.0           | -               |
| 0.9884  | 20850     | 0.0           | -               |
| 0.9908  | 20900     | 0.0           | -               |
| 0.9932  | 20950     | 0.0           | -               |
| 0.9955  | 21000     | 0.0           | -               |
| 0.9979  | 21050     | 0.0           | -               |
| **1.0** | **21094** | **-**         | **0.2251**      |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->