firqaaa commited on
Commit
26ef440
1 Parent(s): f18cd03

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: di area tersebut makanan perancis:mungkin agak ramai di akhir pekan, tapi
13
+ suasana bagus dan ini adalah makanan prancis terbaik yang bisa anda temukan di
14
+ area tersebut makanan perancis
15
+ - text: para pelayan dan pemilik tidak:para pelayan dan pemilik tidak peduli tentang
16
+ hal ini dan berjanji untuk memanggil pembasmi tetapi tidak kecewa atau meminta
17
+ maaf seperti yang saya harapkan.
18
+ - text: suasana ramai tapi suasana:suasana ramai tapi suasana seperti bistro.
19
+ - text: menyukai artisanal! tarif perancis:jika anda menyukai anggur dan keju serta
20
+ hidangan prancis yang lezat, anda akan menyukai artisanal! tarif perancis
21
+ - text: hebat lagi, harga juga sangat terjangkau:hebat lagi, harga juga sangat terjangkau,
22
+ dan makanan sangat enak.
23
+ pipeline_tag: text-classification
24
+ inference: false
25
+ base_model: firqaaa/indo-sentence-bert-base
26
+ model-index:
27
+ - name: SetFit Polarity Model with firqaaa/indo-sentence-bert-base
28
+ results:
29
+ - task:
30
+ type: text-classification
31
+ name: Text Classification
32
+ dataset:
33
+ name: Unknown
34
+ type: unknown
35
+ split: test
36
+ metrics:
37
+ - type: accuracy
38
+ value: 0.6836734693877551
39
+ name: Accuracy
40
+ ---
41
+
42
+ # SetFit Polarity Model with firqaaa/indo-sentence-bert-base
43
+
44
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
45
+
46
+ The model has been trained using an efficient few-shot learning technique that involves:
47
+
48
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
49
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
50
+
51
+ This model was trained within the context of a larger system for ABSA, which looks like so:
52
+
53
+ 1. Use a spaCy model to select possible aspect span candidates.
54
+ 2. Use a SetFit model to filter these possible aspect span candidates.
55
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** SetFit
61
+ - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
62
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
63
+ - **spaCy Model:** id_core_news_trf
64
+ - **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect)
65
+ - **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity)
66
+ - **Maximum Sequence Length:** 512 tokens
67
+ - **Number of Classes:** 4 classes
68
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
69
+ <!-- - **Language:** Unknown -->
70
+ <!-- - **License:** Unknown -->
71
+
72
+ ### Model Sources
73
+
74
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
75
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
76
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
77
+
78
+ ### Model Labels
79
+ | Label | Examples |
80
+ |:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
81
+ | netral | <ul><li>'sangat kecil sehingga reservasi adalah suatu keharusan:restoran ini sangat kecil sehingga reservasi adalah suatu keharusan.'</li><li>'di dekat seorang busboy dan mendesiskan rapido:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang.'</li><li>'dan mengatur ulang meja untuk enam orang:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang.'</li></ul> |
82
+ | negatif | <ul><li>'untuk enam orang nyonya rumah:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang nyonya rumah'</li><li>'setelah berurusan dengan pizza di bawah standar:setelah berurusan dengan pizza di bawah standar di seluruh lingkungan kensington - saya menemukan sedikit tonino.'</li><li>'mereka tidak mejikan bir, anda harus:perhatikan bahwa mereka tidak mejikan bir, anda harus membawa sendiri.'</li></ul> |
83
+ | positif | <ul><li>'saya tidak menyukai gnocchi.:saya tidak menyukai gnocchi.'</li><li>'dari makanan pembuka yang kami makan:dari makanan pembuka yang kami makan, dim sum, dan variasi makanan lain, tidak mungkin untuk mengkritik makanan tersebut.'</li><li>'kami makan, dim sum, dan variasi:dari makanan pembuka yang kami makan, dim sum, dan variasi makanan lain, tidak mungkin untuk mengkritik makanan tersebut.'</li></ul> |
84
+ | konflik | <ul><li>'makanan enak tapi jangan:makanan enak tapi jangan datang ke sini dengan perut kosong.'</li><li>'milik pihak rumah tagihan:namun, setiap perselisihan tentang ruu itu diimbangi oleh takaran minuman keras yang anda tuangkan sendiri yang merupakan milik pihak rumah tagihan'</li><li>'layanan meja bisa menjadi sedikit:layanan meja bisa menjadi sedikit lebih penuh perhatian tetapi sebagai seseorang yang juga bekerja di industri jasa, saya mengerti mereka sedang sibuk.'</li></ul> |
85
+
86
+ ## Evaluation
87
+
88
+ ### Metrics
89
+ | Label | Accuracy |
90
+ |:--------|:---------|
91
+ | **all** | 0.6837 |
92
+
93
+ ## Uses
94
+
95
+ ### Direct Use for Inference
96
+
97
+ First install the SetFit library:
98
+
99
+ ```bash
100
+ pip install setfit
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+
105
+ ```python
106
+ from setfit import AbsaModel
107
+
108
+ # Download from the 🤗 Hub
109
+ model = AbsaModel.from_pretrained(
110
+ "firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect",
111
+ "firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity",
112
+ )
113
+ # Run inference
114
+ preds = model("The food was great, but the venue is just way too busy.")
115
+ ```
116
+
117
+ <!--
118
+ ### Downstream Use
119
+
120
+ *List how someone could finetune this model on their own dataset.*
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Set Metrics
144
+ | Training set | Min | Median | Max |
145
+ |:-------------|:----|:--------|:----|
146
+ | Word count | 3 | 20.9935 | 62 |
147
+
148
+ | Label | Training Sample Count |
149
+ |:--------|:----------------------|
150
+ | konflik | 21 |
151
+ | negatif | 243 |
152
+ | netral | 186 |
153
+ | positif | 626 |
154
+
155
+ ### Training Hyperparameters
156
+ - batch_size: (32, 32)
157
+ - num_epochs: (1, 1)
158
+ - max_steps: -1
159
+ - sampling_strategy: oversampling
160
+ - body_learning_rate: (2e-05, 1e-05)
161
+ - head_learning_rate: 0.01
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: True
167
+ - warmup_proportion: 0.1
168
+ - seed: 42
169
+ - eval_max_steps: -1
170
+ - load_best_model_at_end: True
171
+
172
+ ### Training Results
173
+ | Epoch | Step | Training Loss | Validation Loss |
174
+ |:----------:|:-------:|:-------------:|:---------------:|
175
+ | 0.0000 | 1 | 0.2996 | - |
176
+ | 0.0024 | 50 | 0.2488 | - |
177
+ | 0.0048 | 100 | 0.2636 | - |
178
+ | 0.0071 | 150 | 0.2544 | - |
179
+ | 0.0095 | 200 | 0.2036 | - |
180
+ | 0.0119 | 250 | 0.2002 | - |
181
+ | 0.0143 | 300 | 0.1723 | - |
182
+ | 0.0167 | 350 | 0.2112 | - |
183
+ | 0.0191 | 400 | 0.1655 | - |
184
+ | 0.0214 | 450 | 0.1559 | - |
185
+ | **0.0238** | **500** | **0.0602** | **0.2033** |
186
+ | 0.0262 | 550 | 0.1047 | - |
187
+ | 0.0286 | 600 | 0.1228 | - |
188
+ | 0.0310 | 650 | 0.1152 | - |
189
+ | 0.0333 | 700 | 0.0444 | - |
190
+ | 0.0357 | 750 | 0.0479 | - |
191
+ | 0.0381 | 800 | 0.065 | - |
192
+ | 0.0405 | 850 | 0.0417 | - |
193
+ | 0.0429 | 900 | 0.0647 | - |
194
+ | 0.0452 | 950 | 0.0517 | - |
195
+ | 0.0476 | 1000 | 0.0433 | 0.2399 |
196
+ | 0.0500 | 1050 | 0.0044 | - |
197
+ | 0.0524 | 1100 | 0.0241 | - |
198
+ | 0.0548 | 1150 | 0.0204 | - |
199
+ | 0.0572 | 1200 | 0.0532 | - |
200
+ | 0.0595 | 1250 | 0.0116 | - |
201
+ | 0.0619 | 1300 | 0.0288 | - |
202
+ | 0.0643 | 1350 | 0.0125 | - |
203
+ | 0.0667 | 1400 | 0.0357 | - |
204
+ | 0.0691 | 1450 | 0.0028 | - |
205
+ | 0.0714 | 1500 | 0.027 | 0.2564 |
206
+ | 0.0738 | 1550 | 0.0032 | - |
207
+ | 0.0762 | 1600 | 0.0048 | - |
208
+ | 0.0786 | 1650 | 0.0003 | - |
209
+ | 0.0810 | 1700 | 0.0008 | - |
210
+ | 0.0834 | 1750 | 0.0008 | - |
211
+ | 0.0857 | 1800 | 0.0023 | - |
212
+ | 0.0881 | 1850 | 0.0003 | - |
213
+ | 0.0905 | 1900 | 0.0004 | - |
214
+ | 0.0929 | 1950 | 0.0003 | - |
215
+ | 0.0953 | 2000 | 0.0054 | 0.2812 |
216
+ | 0.0976 | 2050 | 0.0005 | - |
217
+ | 0.1000 | 2100 | 0.0006 | - |
218
+ | 0.1024 | 2150 | 0.0004 | - |
219
+ | 0.1048 | 2200 | 0.0019 | - |
220
+ | 0.1072 | 2250 | 0.0007 | - |
221
+ | 0.1095 | 2300 | 0.0004 | - |
222
+ | 0.1119 | 2350 | 0.0001 | - |
223
+ | 0.1143 | 2400 | 0.0004 | - |
224
+ | 0.1167 | 2450 | 0.0069 | - |
225
+ | 0.1191 | 2500 | 0.0001 | 0.2845 |
226
+ | 0.1215 | 2550 | 0.0 | - |
227
+ | 0.1238 | 2600 | 0.0002 | - |
228
+ | 0.1262 | 2650 | 0.0001 | - |
229
+ | 0.1286 | 2700 | 0.0109 | - |
230
+ | 0.1310 | 2750 | 0.0037 | - |
231
+ | 0.1334 | 2800 | 0.0001 | - |
232
+ | 0.1357 | 2850 | 0.0001 | - |
233
+ | 0.1381 | 2900 | 0.0001 | - |
234
+ | 0.1405 | 2950 | 0.0001 | - |
235
+ | 0.1429 | 3000 | 0.0001 | 0.2839 |
236
+
237
+ * The bold row denotes the saved checkpoint.
238
+ ### Framework Versions
239
+ - Python: 3.10.13
240
+ - SetFit: 1.0.3
241
+ - Sentence Transformers: 2.2.2
242
+ - spaCy: 3.7.4
243
+ - Transformers: 4.36.2
244
+ - PyTorch: 2.1.2+cu121
245
+ - Datasets: 2.16.1
246
+ - Tokenizers: 0.15.0
247
+
248
+ ## Citation
249
+
250
+ ### BibTeX
251
+ ```bibtex
252
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
253
+ doi = {10.48550/ARXIV.2209.11055},
254
+ url = {https://arxiv.org/abs/2209.11055},
255
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
256
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
257
+ title = {Efficient Few-Shot Learning Without Prompts},
258
+ publisher = {arXiv},
259
+ year = {2022},
260
+ copyright = {Creative Commons Attribution 4.0 International}
261
+ }
262
+ ```
263
+
264
+ <!--
265
+ ## Glossary
266
+
267
+ *Clearly define terms in order to be accessible across audiences.*
268
+ -->
269
+
270
+ <!--
271
+ ## Model Card Authors
272
+
273
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
274
+ -->
275
+
276
+ <!--
277
+ ## Model Card Contact
278
+
279
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
280
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/step_500/",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.20.1",
5
+ "pytorch": "1.11.0"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "konflik",
4
+ "negatif",
5
+ "netral",
6
+ "positif"
7
+ ],
8
+ "spacy_model": "id_core_news_trf",
9
+ "span_context": 3,
10
+ "normalize_embeddings": false
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e75903b9d43b34a9602d4470583b192ab954eaad3938be8194373d688bd884c
3
+ size 497787752
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f44ec07fb9b9dace9551bb690bc911ad26d46608df4ea725d60dc16975f68e
3
+ size 25543
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff