|
import logging |
|
from typing import Any, Dict, Optional, Set, Tuple, Union |
|
|
|
import peft |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import transformers |
|
import transformers.activations |
|
import transformers.modeling_outputs |
|
import transformers.models |
|
|
|
|
|
|
|
from .ultravox_config import UltravoxConfig |
|
from .whisper_model_modified import WhisperEncoder as ModifiedWhisperEncoder |
|
|
|
|
|
class UltravoxModel(transformers.LlamaPreTrainedModel): |
|
""" |
|
The Ultravox model which consists of an audio encoder and a language model. |
|
|
|
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and |
|
projected to the language model's embedding space using a few linear layers. |
|
The text is embedded by the language model as usual and then the audio and text embeddings are merged together. |
|
|
|
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings. |
|
|
|
Parameters: |
|
config: Model configuration class with all the parameters of the model. |
|
""" |
|
|
|
config_class = UltravoxConfig |
|
config: UltravoxConfig |
|
_no_split_modules = ["Wav2Vec2Model", "WhisperEncoder", "LlamaDecoderLayer"] |
|
|
|
def __init__(self, config: UltravoxConfig): |
|
super().__init__(config) |
|
|
|
self.keep_params: Set[str] = set() |
|
self.vocab_size = config.vocab_size |
|
|
|
self.audio_tower = self._create_audio_tower(config) |
|
self.multi_modal_projector = UltravoxProjector(config) |
|
self.language_model = self._create_language_model(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def _setup_cache( |
|
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None |
|
): |
|
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
return self.language_model._reorder_cache(past_key_values, beam_idx) |
|
|
|
def resize_token_embeddings( |
|
self, |
|
new_num_tokens: Optional[int] = None, |
|
pad_to_multiple_of: Optional[int] = None, |
|
) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings( |
|
new_num_tokens, pad_to_multiple_of |
|
) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
audio_values: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
audio_token_start_idx: Optional[torch.Tensor] = None, |
|
audio_token_len: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None, |
|
**kwargs, |
|
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]: |
|
""" |
|
Forward pass for the Ultravox model. |
|
|
|
`input_ids` are the tokenized text input. They are embedded by the language model as usual. |
|
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and |
|
projected to the language model's embedding space using a few linear layers. |
|
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start |
|
of the audio embeddings in the merged embeddings. |
|
|
|
Args: |
|
input_ids: The tokenized text input. |
|
audio_values: The processed audio values. |
|
inputs_embeds: The embeddings for the input tokens. |
|
labels: The tokenized text labels. |
|
attention_mask: The attention mask for the input. |
|
position_ids: The position ids for the input. |
|
past_key_values: The past key value cache for the language model attention layers. |
|
**kwargs: Additional keyword arguments. Passed directly to the language model. |
|
""" |
|
if inputs_embeds is None: |
|
|
|
inputs_embeds = self.get_input_embeddings().forward(input_ids) |
|
|
|
if audio_values is not None: |
|
assert ( |
|
audio_token_start_idx is not None and audio_token_len is not None |
|
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided." |
|
assert ( |
|
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values) |
|
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size." |
|
|
|
|
|
audio_tower_output = self.audio_tower.forward( |
|
audio_values |
|
).last_hidden_state |
|
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype) |
|
|
|
audio_embeds = self.multi_modal_projector.forward(audio_tower_output) |
|
|
|
|
|
for i, (audio, start, length) in enumerate( |
|
zip(audio_embeds, audio_token_start_idx, audio_token_len) |
|
): |
|
length = min(length, audio.shape[0]) |
|
inputs_embeds[i, start : start + length] = audio[:length] |
|
|
|
lm_output = self.language_model.forward( |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
**kwargs, |
|
) |
|
|
|
return lm_output |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
audio_values: Optional[torch.FloatTensor] = None, |
|
audio_token_start_idx: Optional[torch.Tensor] = None, |
|
audio_token_len: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Dict[str, Any]: |
|
model_input = self.language_model.prepare_inputs_for_generation( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
**kwargs, |
|
) |
|
|
|
if is_cache_empty(past_key_values) and audio_values is not None: |
|
|
|
model_input["audio_values"] = audio_values |
|
model_input["audio_token_start_idx"] = audio_token_start_idx |
|
model_input["audio_token_len"] = audio_token_len |
|
|
|
return model_input |
|
|
|
@classmethod |
|
def _create_audio_tower( |
|
cls, config: UltravoxConfig |
|
) -> Union[transformers.Wav2Vec2Model, ModifiedWhisperEncoder]: |
|
if config.audio_model_id is not None: |
|
if "whisper" in config.audio_model_id is not None: |
|
audio_tower = ModifiedWhisperEncoder.from_pretrained( |
|
config.audio_model_id |
|
) |
|
else: |
|
audio_tower = transformers.AutoModel.from_pretrained( |
|
config.audio_model_id |
|
) |
|
else: |
|
if "whisper" in config.audio_config._name_or_path: |
|
audio_tower = ModifiedWhisperEncoder(config.audio_config) |
|
else: |
|
audio_tower = transformers.AutoModel.from_config(config.audio_config) |
|
|
|
if isinstance( |
|
audio_tower, |
|
(transformers.Wav2Vec2BertModel, transformers.WhisperModel), |
|
): |
|
|
|
|
|
|
|
audio_tower = audio_tower.encoder |
|
|
|
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config) |
|
return audio_tower |
|
|
|
@classmethod |
|
def _create_language_model( |
|
cls, config: UltravoxConfig |
|
) -> transformers.LlamaForCausalLM: |
|
if config.text_model_id is not None: |
|
language_model = transformers.AutoModelForCausalLM.from_pretrained( |
|
config.text_model_id, attn_implementation=config._attn_implementation |
|
) |
|
else: |
|
language_model = transformers.AutoModelForCausalLM.from_config( |
|
config.text_config, attn_implementation=config._attn_implementation |
|
) |
|
|
|
language_model = apply_lora(language_model, config.text_model_lora_config) |
|
return language_model |
|
|
|
def merge_and_unload(self): |
|
if isinstance(self.language_model, peft.PeftModel): |
|
self.language_model = self.language_model.merge_and_unload() |
|
|
|
self.config.text_model_id = None |
|
self.keep_params.update( |
|
set( |
|
[ |
|
f"language_model.{name}" |
|
for name, _ in self.language_model.named_parameters() |
|
] |
|
) |
|
) |
|
|
|
if isinstance(self.audio_tower, peft.PeftModel): |
|
self.audio_tower = self.audio_tower.merge_and_unload() |
|
|
|
self.config.audio_model_id = None |
|
self.keep_params.update( |
|
set( |
|
[ |
|
f"audio_tower.{name}" |
|
for name, _ in self.audio_tower.named_parameters() |
|
] |
|
) |
|
) |
|
|
|
for param in ["text_model_lora_config", "audio_model_lora_config"]: |
|
if hasattr(self.config, param): |
|
delattr(self.config, param) |
|
|
|
def push_to_hub(self, *args, **kwargs): |
|
self.merge_and_unload() |
|
self.to(self.language_model.dtype) |
|
return super().push_to_hub(*args, **kwargs) |
|
|
|
def state_dict(self, *args, **kwargs): |
|
named_params = dict(self.named_parameters()) |
|
state_dict = super().state_dict(*args, **kwargs) |
|
|
|
state_dict = { |
|
k: v |
|
for k, v in state_dict.items() |
|
if k in self.keep_params |
|
or (k in named_params and named_params[k].requires_grad) |
|
} |
|
return state_dict |
|
|
|
def load_state_dict( |
|
self, |
|
state_dict: Dict[str, Any], |
|
*args, |
|
**kwargs, |
|
): |
|
self.keep_params.update(set(state_dict.keys())) |
|
return super().load_state_dict(state_dict, *args, **kwargs) |
|
|
|
def print_trainable_parameters(self): |
|
""" |
|
Prints the number of trainable parameters in the model (reuses Peft model's method) |
|
""" |
|
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters |
|
|
|
trainable_params, all_param = count_params(self) |
|
|
|
logging.info( |
|
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}" |
|
f" || trainable%: {100 * trainable_params / all_param:.1f}%" |
|
) |
|
|
|
lm_trainable_params, lm_all_params = count_params(self.language_model) |
|
audio_trainable_params, audio_all_params = count_params(self.audio_tower) |
|
|
|
projector_trainable_params = ( |
|
trainable_params - lm_trainable_params - audio_trainable_params |
|
) |
|
projector_all_params = all_param - lm_all_params - audio_all_params |
|
|
|
logging.info( |
|
f"Trainable%: " |
|
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%" |
|
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%" |
|
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%" |
|
) |
|
|
|
|
|
def is_cache_empty( |
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] |
|
) -> bool: |
|
""" |
|
Check if the cache is empty. |
|
""" |
|
if past_key_values is None: |
|
return True |
|
if isinstance(past_key_values, tuple): |
|
return all(len(c) == 0 for c in past_key_values) |
|
return past_key_values.get_seq_length() == 0 |
|
|
|
|
|
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module: |
|
""" |
|
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead. |
|
""" |
|
lora_config = peft.LoraConfig(**lora_config or {}) |
|
|
|
if lora_config.r == 0: |
|
|
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
else: |
|
model = peft.get_peft_model(model, lora_config) |
|
|
|
return model |
|
|
|
|
|
class StackAudioFrames(nn.Module): |
|
""" |
|
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`. |
|
|
|
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames. |
|
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor, |
|
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings. |
|
In most cases this extra padding will get removed in the model's forward function so it has no effect. |
|
""" |
|
|
|
def __init__(self, stack_factor: int = 8): |
|
super().__init__() |
|
self.stack_factor = stack_factor |
|
|
|
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor: |
|
B, T, C = audio_embeds.shape |
|
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor |
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor)) |
|
B, T, C = audio_embeds.shape |
|
audio_embeds = audio_embeds.view( |
|
B, T // self.stack_factor, C * self.stack_factor |
|
) |
|
return audio_embeds |
|
|
|
|
|
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm): |
|
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6): |
|
super().__init__(hidden_size=hidden_size, eps=eps) |
|
self.weight.data.fill_(init) |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
|
|
class UltravoxProjector(nn.Sequential): |
|
def __init__(self, config: UltravoxConfig): |
|
super().__init__() |
|
self.hidden_dim = config.hidden_size |
|
self._pad_and_stack = StackAudioFrames(config.stack_factor) |
|
dim = config.audio_config.hidden_size * config.stack_factor |
|
self.ln_pre = RMSNorm(dim, init=config.norm_init) |
|
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False) |
|
dim = self.hidden_dim |
|
self.act = transformers.activations.get_activation(config.projector_act) |
|
dim = dim // 2 if config.projector_act == "swiglu" else dim |
|
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False) |
|
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init) |
|
|
|
def forward(self, audio_features: torch.Tensor) -> torch.Tensor: |
|
audio_features = self._pad_and_stack(audio_features) |
|
audio_features = self.ln_pre(audio_features) |
|
hidden_states = self.linear_1(audio_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
hidden_states = self.ln_post(hidden_states) |
|
return hidden_states |
|
|
|
|
|
UltravoxConfig.register_for_auto_class() |
|
UltravoxModel.register_for_auto_class() |
|
|
|
transformers.AutoConfig.register("ultravox", UltravoxConfig) |
|
transformers.AutoModel.register(UltravoxConfig, UltravoxModel) |
|
|
|
|
|
transformers.activations.ACT2FN["swiglu"] = SwiGLU |
|
|