File size: 6,484 Bytes
c3e5846
 
 
 
 
 
 
 
 
 
 
 
 
 
607f97c
 
 
 
 
c3e5846
 
f486b26
c3e5846
 
 
f3af836
c3e5846
f3af836
 
 
 
 
 
c3e5846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f486b26
c3e5846
 
 
 
bbffa0c
f3af836
dfb2efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbffa0c
dfb2efc
 
 
 
 
 
 
 
bbffa0c
dfb2efc
 
 
 
 
 
 
 
bbffa0c
dfb2efc
 
 
 
 
 
 
 
bbffa0c
dfb2efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e5846
 
 
fb58630
c3e5846
 
 
 
 
 
 
f3af836
c3e5846
 
f3af836
 
796a071
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e5846
 
 
 
 
 
 
 
 
 
f3af836
 
 
 
c3e5846
 
 
f3af836
 
 
c3e5846
 
f3af836
c3e5846
f3af836
 
c3e5846
 
 
 
f3af836
 
 
 
 
c3e5846
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
language:
- de
tags:
- german
- causal-lm
- text-generation
library_name: transformers
pipeline_tag: text-generation
license: apache-2.0
---

# BübleLM


<div align="center" style="margin-bottom: 2rem; margin-top: 2rem">
    <img src="https://pieter.ai/resources/buble-logo.png" alt="BübleLM Logo" style="max-height: 450px; width: auto;"/>
    <h1 style="margin-top: 1rem;">BübleLM</h1>
    <p><em>A small German LM</em></p>
</div>

BübleLM is a German language model based on Gemma-2-2B, adapted using [trans-tokenization](https://pieter.ai/trans-tokenization/) with a custom German SentencePiece tokenizer. The model demonstrates how language-specific tokenization can significantly improve performance while maintaining the base model's capabilities.

## Model Details

- **Architecture**: Based on Gemma-2B decoder-only architecture
- **Parameters**: 2 billion
- **Tokenizer**: Custom German SentencePiece tokenizer (20k vocabulary)
  - Fertility rate: 1.78 tokens per word
  - Optimized for German morphological structures
  - Trained on the same corpus as the model
- **Context Length**: 8192 tokens
- **Training Hardware**: Single node with 4x NVidia A100-SXM4-80GB GPUs

## Training Data

Trained on 3.5B tokens from Occiglot-FineWeb project, including:
- Contemporary web content (OSCAR 2015-2023)
- Legislative documents (EurLex, ParlamInt)
- News data (Tagesschau)
- Wiki sources

Data sampling weights:
- Wikipedia: 4x
- News/Parliamentary: 2x
- Other sources: 1x

## Performance

Key improvements over Gemma-2-2B baseline:
- HellaSwag-DE: +71% (47.9% vs 28.0%)
- ARC-DE: +41% (32.3% vs 22.9%)
- Average zero-shot: +40% (35.8% vs 25.5%)

→ BübleLM-2B consistently outperforms both the base Gemma-2-2B and other German models like LLäMmlein-1B across most tasks.

<table class="model-comparison">
  <thead>
    <tr>
      <th align="left">Model</th>
      <th align="center" colspan="2">ARC-DE</th>
      <th align="center" colspan="2">HellaSwag-DE</th>
      <th align="center">TruthfulQA-DE</th>
      <th align="center">Average</th>
    </tr>
    <tr>
      <th></th>
      <th align="center">0-shot</th>
      <th align="center">3-shot</th>
      <th align="center">0-shot</th>
      <th align="center">3-shot</th>
      <th align="center">0-shot</th>
      <th align="center">0-shot</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><a href="https://huggingface.co/google/gemma-2-2b" target="_blank">Gemma-2-2B</a></td>
      <td align="center">22.9</td>
      <td align="center">23.1</td>
      <td align="center">28.0</td>
      <td align="center">27.6</td>
      <td align="center">25.5</td>
      <td align="center">25.5</td>
    </tr>
    <tr>
      <td><a href="https://huggingface.co/LSX-UniWue/LLaMmlein_120M" target="_blank">LLäMmlein-120M</a></td>
      <td align="center">24.7 ↑+8%</td>
      <td align="center">-</td>
      <td align="center">32.0 ↑+14%</td>
      <td align="center">-</td>
      <td align="center">25.0 ↓-2%</td>
      <td align="center">27.2 ↑+7%</td>
    </tr>
    <tr>
      <td><a href="https://huggingface.co/LSX-UniWue/LLaMmlein_1B" target="_blank">LLäMmlein-1B</a></td>
      <td align="center">30.0 ↑+31%</td>
      <td align="center">-</td>
      <td align="center"><strong>48.5</strong> ↑+73%</td>
      <td align="center">-</td>
      <td align="center">23.4 ↓-8%</td>
      <td align="center">34.0 ↑+33%</td>
    </tr>
    <tr>
      <td><a href="https://huggingface.co/VAGOsolutions/SauerkrautLM-Gemma-2b" target="_blank">Sauerkraut-Gemma-2B</a></td>
      <td align="center">28.0 ↑+22%</td>
      <td align="center">34.6 ↑+50%</td>
      <td align="center">37.2 ↑+33%</td>
      <td align="center">44.1 ↑+60%</td>
      <td align="center"><strong>32.9</strong> ↑+29%</td>
      <td align="center">32.7 ↑+28%</td>
    </tr>
    <tr>
      <td><strong>BübleLM (Ours)</strong></td>
      <td align="center"><strong>32.3</strong> ↑+41%</td>
      <td align="center"><strong>35.2</strong> ↑+52%</td>
      <td align="center">47.9 ↑+71%</td>
      <td align="center"><strong>46.6</strong> ↑+69%</td>
      <td align="center">27.2 ↑+7%</td>
      <td align="center"><strong>35.8</strong> ↑+40%</td>
    </tr>
  </tbody>
</table>

*Performance evaluated on German versions of ARC (knowledge-based QA), HellaSwag (commonsense reasoning), and TruthfulQA (truthfulness). Values show accuracy in percentages, with arrows indicating relative improvement over Gemma-2B baseline. Best results shown in bold.*

## Safety & Ethics

### Toxicity
- Perplexity: 52.97 on German TextDetox dataset
- Toxic content appears more out-of-distribution compared to baseline

### Gender Bias
- Evaluated using perplexity differences between traditional and gender-inclusive forms
- Slight preference for gender-inclusive language (not statistically significant)
- Example: "Lehrer" vs "Lehrer*innen" (∆PPL = -9.61)


## Usage

**Note**: This is a base language model, not an instruction-tuned model. It is not optimized for chat or instruction following. For best results, use standard text completion rather than chat templates.

Also make sure you have the sentencepiece tokenizer installed:

```bash
pip install sentencepiece
```

```python
from transformers import pipeline
pipe = pipeline("text-generation", model="flair/bueble-lm-2b")
pipe("Ich bin")
```

Or with the full model api:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("flair/bueble-lm-2b")
model = AutoModelForCausalLM.from_pretrained(
    "flair/bueble-lm-2b",
    device_map="auto",
    torch_dtype=torch.bfloat16
)

# Basic text completion
text = "Berlin ist eine Stadt, die"
inputs = tokenizer(text, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
```

For instruction-tuning experiments or chat applications, we recommend fine-tuning the model first with appropriate German instruction datasets.


## Limitations

- Limited vocabulary size (20k tokens) compared to multilingual models (250k for Gemma)
- Performance may vary on specialized domains not well-represented in training data
- Higher fertility rate (1.78) due to smaller vocabulary size
- Inherits base limitations from Gemma architecture

## Citation

```bibtex
@article{delobelle2024buble,
    title={BübleLM: A small German LM},
    author={Delobelle, Pieter and Akbik, Alan and others},
    year={2024}
}
```