alanakbik commited on
Commit
7f51b91
1 Parent(s): 847e261

initial model commit

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -13,7 +13,7 @@ inference: false
13
 
14
  This is the fast phrase chunking model for English that ships with [Flair](https://github.com/flairNLP/flair/).
15
 
16
- F1-Score: **96,48** (corrected CoNLL-2000)
17
 
18
  Predicts 4 tags:
19
 
@@ -43,7 +43,7 @@ from flair.data import Sentence
43
  from flair.models import SequenceTagger
44
 
45
  # load tagger
46
- tagger = SequenceTagger.load("flair/chunk-english")
47
 
48
  # make example sentence
49
  sentence = Sentence("The happy man has been eating at the diner")
@@ -98,10 +98,10 @@ tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
98
  embedding_types = [
99
 
100
  # contextual string embeddings, forward
101
- FlairEmbeddings('news-forward'),
102
 
103
  # contextual string embeddings, backward
104
- FlairEmbeddings('news-backward'),
105
  ]
106
 
107
  # embedding stack consists of Flair and GloVe embeddings
@@ -121,7 +121,7 @@ from flair.trainers import ModelTrainer
121
  trainer = ModelTrainer(tagger, corpus)
122
 
123
  # 7. run training
124
- trainer.train('resources/taggers/chunk-english',
125
  train_with_dev=True,
126
  max_epochs=150)
127
  ```
 
13
 
14
  This is the fast phrase chunking model for English that ships with [Flair](https://github.com/flairNLP/flair/).
15
 
16
+ F1-Score: **96,22** (corrected CoNLL-2000)
17
 
18
  Predicts 4 tags:
19
 
 
43
  from flair.models import SequenceTagger
44
 
45
  # load tagger
46
+ tagger = SequenceTagger.load("flair/chunk-english-fast")
47
 
48
  # make example sentence
49
  sentence = Sentence("The happy man has been eating at the diner")
 
98
  embedding_types = [
99
 
100
  # contextual string embeddings, forward
101
+ FlairEmbeddings('news-forward-fast'),
102
 
103
  # contextual string embeddings, backward
104
+ FlairEmbeddings('news-backward-fast'),
105
  ]
106
 
107
  # embedding stack consists of Flair and GloVe embeddings
 
121
  trainer = ModelTrainer(tagger, corpus)
122
 
123
  # 7. run training
124
+ trainer.train('resources/taggers/chunk-english-fast',
125
  train_with_dev=True,
126
  max_epochs=150)
127
  ```