initial model commit
Browse files
README.md
CHANGED
@@ -11,9 +11,9 @@ inference: false
|
|
11 |
|
12 |
## 4-Language NER in Flair (English, German, Dutch and Spanish)
|
13 |
|
14 |
-
This is the
|
15 |
|
16 |
-
F1-Score: **
|
17 |
|
18 |
|
19 |
Predicts 4 tags:
|
@@ -38,7 +38,7 @@ from flair.data import Sentence
|
|
38 |
from flair.models import SequenceTagger
|
39 |
|
40 |
# load tagger
|
41 |
-
tagger = SequenceTagger.load("flair/ner-multi")
|
42 |
|
43 |
# make example sentence in any of the four languages
|
44 |
sentence = Sentence("George Washington ging nach Washington")
|
@@ -101,10 +101,10 @@ embedding_types = [
|
|
101 |
WordEmbeddings('de'),
|
102 |
|
103 |
# contextual string embeddings, forward
|
104 |
-
FlairEmbeddings('multi-forward'),
|
105 |
|
106 |
# contextual string embeddings, backward
|
107 |
-
FlairEmbeddings('multi-backward'),
|
108 |
]
|
109 |
|
110 |
# embedding stack consists of Flair and GloVe embeddings
|
@@ -124,7 +124,7 @@ from flair.trainers import ModelTrainer
|
|
124 |
trainer = ModelTrainer(tagger, corpus)
|
125 |
|
126 |
# 7. run training
|
127 |
-
trainer.train('resources/taggers/ner-multi',
|
128 |
train_with_dev=True,
|
129 |
max_epochs=150)
|
130 |
```
|
@@ -135,7 +135,18 @@ trainer.train('resources/taggers/ner-multi',
|
|
135 |
|
136 |
### Cite
|
137 |
|
138 |
-
Please cite the following
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
```
|
141 |
@inproceedings{akbik2018coling,
|
|
|
11 |
|
12 |
## 4-Language NER in Flair (English, German, Dutch and Spanish)
|
13 |
|
14 |
+
This is the fast 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French.
|
15 |
|
16 |
+
F1-Score: **91,51** (CoNLL-03 English), **85,72** (CoNLL-03 German revised), **86,22** (CoNLL-03 Dutch), **85,78** (CoNLL-03 Spanish)
|
17 |
|
18 |
|
19 |
Predicts 4 tags:
|
|
|
38 |
from flair.models import SequenceTagger
|
39 |
|
40 |
# load tagger
|
41 |
+
tagger = SequenceTagger.load("flair/ner-multi-fast")
|
42 |
|
43 |
# make example sentence in any of the four languages
|
44 |
sentence = Sentence("George Washington ging nach Washington")
|
|
|
101 |
WordEmbeddings('de'),
|
102 |
|
103 |
# contextual string embeddings, forward
|
104 |
+
FlairEmbeddings('multi-forward-fast'),
|
105 |
|
106 |
# contextual string embeddings, backward
|
107 |
+
FlairEmbeddings('multi-backward-fast'),
|
108 |
]
|
109 |
|
110 |
# embedding stack consists of Flair and GloVe embeddings
|
|
|
124 |
trainer = ModelTrainer(tagger, corpus)
|
125 |
|
126 |
# 7. run training
|
127 |
+
trainer.train('resources/taggers/ner-multi-fast',
|
128 |
train_with_dev=True,
|
129 |
max_epochs=150)
|
130 |
```
|
|
|
135 |
|
136 |
### Cite
|
137 |
|
138 |
+
Please cite the following papers when using this model.
|
139 |
+
|
140 |
+
|
141 |
+
```
|
142 |
+
@misc{akbik2019multilingual,
|
143 |
+
title={Multilingual sequence labeling with one model},
|
144 |
+
author={Akbik, Alan and Bergmann, Tanja and Vollgraf, Roland}
|
145 |
+
booktitle = {{NLDL} 2019, Northern Lights Deep Learning Workshop},
|
146 |
+
year = {2019}
|
147 |
+
}
|
148 |
+
```
|
149 |
+
|
150 |
|
151 |
```
|
152 |
@inproceedings{akbik2018coling,
|