File size: 4,758 Bytes
a5e34eb
 
 
 
 
c2e7c32
 
 
 
1f5fb36
 
 
 
 
 
 
 
 
a5e34eb
 
236615d
 
a5e34eb
 
 
 
 
 
c2e7c32
a5e34eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2605be
a5e34eb
 
 
 
 
b2605be
 
 
 
a5e34eb
 
 
 
b2605be
 
 
 
 
 
 
 
a5e34eb
 
c2e7c32
a5e34eb
 
 
 
 
 
c2e7c32
a5e34eb
 
3ca1c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e34eb
 
 
 
 
c2e7c32
a5e34eb
 
 
 
 
 
 
 
 
 
c2e7c32
a5e34eb
 
 
 
 
 
 
 
3ca1c76
 
a5e34eb
 
 
 
 
 
 
5b5c4b3
a5e34eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
tags:
- flair
- token-classification
- sequence-tagger-model
language:
- en
- de
- fr
- it
- nl
- pl
- es
- sv
- da
- no
- fi
- cs
datasets:
- ontonotes
widget:
- text: "Ich liebe Berlin, as they say"
---

## Multilingual Universal Part-of-Speech Tagging in Flair (default model)

This is the default multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/).

F1-Score: **96.87** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)

Predicts universal POS tags:

| **tag**                        | **meaning** |
|---------------------------------|-----------|
|ADJ |  adjective |
 |   ADP |  adposition |
 |   ADV |  adverb |
 |   AUX |  auxiliary |
 |   CCONJ |  coordinating conjunction |
 |   DET |  determiner |
 |   INTJ |  interjection |
 |   NOUN |  noun |
 |   NUM |  numeral |
 |   PART |  particle |
 |   PRON |  pronoun |
 |   PROPN |  proper noun |
 |   PUNCT |  punctuation |
 |   SCONJ |  subordinating conjunction |
 |   SYM |  symbol |
 |   VERB |  verb |
 |   X |  other |



Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.

---

### Demo: How to use in Flair

Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)

```python
from flair.data import Sentence
from flair.models import SequenceTagger

# load tagger
tagger = SequenceTagger.load("flair/upos-multi")

# make example sentence
sentence = Sentence("Ich liebe Berlin, as they say. ")

# predict POS tags
tagger.predict(sentence)

# print sentence
print(sentence)

# iterate over tokens and print the predicted POS label
print("The following POS tags are found:")
for token in sentence:
    print(token.get_label("upos"))
```

This yields the following output:
```
Token[0]: "Ich" β†’ PRON (0.9999)
Token[1]: "liebe" β†’ VERB (0.9999)
Token[2]: "Berlin" β†’ PROPN (0.9997)
Token[3]: "," β†’ PUNCT (1.0)
Token[4]: "as" β†’ SCONJ (0.9991)
Token[5]: "they" β†’ PRON (0.9998)
Token[6]: "say" β†’ VERB (0.9998)
Token[7]: "." β†’ PUNCT (1.0)
```

So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*".


---

### Training: Script to train this model

The following Flair script was used to train this model:

```python
from flair.data import MultiCorpus
from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \
    UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH
from flair.embeddings import StackedEmbeddings, FlairEmbeddings

# 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large)
corpus = MultiCorpus([
    UD_ENGLISH(in_memory=False),
    UD_GERMAN(in_memory=False),
    UD_DUTCH(in_memory=False),
    UD_FRENCH(in_memory=False),
    UD_ITALIAN(in_memory=False),
    UD_SPANISH(in_memory=False),
    UD_POLISH(in_memory=False),
    UD_CZECH(in_memory=False),
    UD_DANISH(in_memory=False),
    UD_SWEDISH(in_memory=False),
    UD_NORWEGIAN(in_memory=False),
    UD_FINNISH(in_memory=False),
])

# 2. what tag do we want to predict?
tag_type = 'upos'

# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_label_dictionary(label_type=tag_type)

# 4. initialize each embedding we use
embedding_types = [
    # contextual string embeddings, forward
    FlairEmbeddings('multi-forward'),

    # contextual string embeddings, backward
    FlairEmbeddings('multi-backward'),
]

# embedding stack consists of Flair embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)

# 5. initialize sequence tagger
from flair.models import SequenceTagger

tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type,
                        use_crf=False)

# 6. initialize trainer
from flair.trainers import ModelTrainer

trainer = ModelTrainer(tagger, corpus)

# 7. run training
trainer.train('resources/taggers/upos-multi',
              train_with_dev=True,
              max_epochs=150)
```



---

### Cite

Please cite the following paper when using this model.

```
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
```

---

### Issues?

The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).