marcusinthesky
commited on
Commit
•
924daa7
1
Parent(s):
691e117
Upload model
Browse files- config.json +179 -0
- model.safetensors +3 -0
- modelling.py +174 -0
config.json
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "e9754cb57664705bacb62145ea8a977f269a456b",
|
3 |
+
"_name_or_path": "flavour/vtde-dinov2-small-bge-small-en",
|
4 |
+
"architectures": [
|
5 |
+
"VTDEModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "modelling.VTDEConfig",
|
9 |
+
"AutoModel": "modelling.VTDEModel"
|
10 |
+
},
|
11 |
+
"logit_scale_init_value": 2.6592,
|
12 |
+
"model_type": "vtde",
|
13 |
+
"projection_dim": 384,
|
14 |
+
"text_config": {
|
15 |
+
"_name_or_path": "BAAI/bge-small-en",
|
16 |
+
"add_cross_attention": false,
|
17 |
+
"architectures": [
|
18 |
+
"BertModel"
|
19 |
+
],
|
20 |
+
"attention_probs_dropout_prob": 0.1,
|
21 |
+
"bad_words_ids": null,
|
22 |
+
"begin_suppress_tokens": null,
|
23 |
+
"bos_token_id": null,
|
24 |
+
"chunk_size_feed_forward": 0,
|
25 |
+
"classifier_dropout": null,
|
26 |
+
"cross_attention_hidden_size": null,
|
27 |
+
"decoder_start_token_id": null,
|
28 |
+
"diversity_penalty": 0.0,
|
29 |
+
"do_sample": false,
|
30 |
+
"early_stopping": false,
|
31 |
+
"encoder_no_repeat_ngram_size": 0,
|
32 |
+
"eos_token_id": null,
|
33 |
+
"exponential_decay_length_penalty": null,
|
34 |
+
"finetuning_task": null,
|
35 |
+
"forced_bos_token_id": null,
|
36 |
+
"forced_eos_token_id": null,
|
37 |
+
"hidden_act": "gelu",
|
38 |
+
"hidden_dropout_prob": 0.1,
|
39 |
+
"hidden_size": 384,
|
40 |
+
"id2label": {
|
41 |
+
"0": "LABEL_0"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 1536,
|
45 |
+
"is_decoder": false,
|
46 |
+
"is_encoder_decoder": false,
|
47 |
+
"label2id": {
|
48 |
+
"LABEL_0": 0
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-12,
|
51 |
+
"length_penalty": 1.0,
|
52 |
+
"max_length": 20,
|
53 |
+
"max_position_embeddings": 512,
|
54 |
+
"min_length": 0,
|
55 |
+
"model_type": "bert",
|
56 |
+
"no_repeat_ngram_size": 0,
|
57 |
+
"num_attention_heads": 12,
|
58 |
+
"num_beam_groups": 1,
|
59 |
+
"num_beams": 1,
|
60 |
+
"num_hidden_layers": 12,
|
61 |
+
"num_return_sequences": 1,
|
62 |
+
"output_attentions": false,
|
63 |
+
"output_hidden_states": false,
|
64 |
+
"output_scores": false,
|
65 |
+
"pad_token_id": 0,
|
66 |
+
"position_embedding_type": "absolute",
|
67 |
+
"prefix": null,
|
68 |
+
"problem_type": null,
|
69 |
+
"pruned_heads": {},
|
70 |
+
"remove_invalid_values": false,
|
71 |
+
"repetition_penalty": 1.0,
|
72 |
+
"return_dict": true,
|
73 |
+
"return_dict_in_generate": false,
|
74 |
+
"sep_token_id": null,
|
75 |
+
"suppress_tokens": null,
|
76 |
+
"task_specific_params": null,
|
77 |
+
"temperature": 1.0,
|
78 |
+
"tf_legacy_loss": false,
|
79 |
+
"tie_encoder_decoder": false,
|
80 |
+
"tie_word_embeddings": true,
|
81 |
+
"tokenizer_class": null,
|
82 |
+
"top_k": 50,
|
83 |
+
"top_p": 1.0,
|
84 |
+
"torch_dtype": "float32",
|
85 |
+
"torchscript": false,
|
86 |
+
"transformers_version": "4.32.0.dev0",
|
87 |
+
"type_vocab_size": 2,
|
88 |
+
"typical_p": 1.0,
|
89 |
+
"use_bfloat16": false,
|
90 |
+
"use_cache": true,
|
91 |
+
"vocab_size": 30522
|
92 |
+
},
|
93 |
+
"text_pooling_mode": "mean",
|
94 |
+
"torch_dtype": "float32",
|
95 |
+
"transformers_version": null,
|
96 |
+
"vision_config": {
|
97 |
+
"_name_or_path": "facebook/dinov2-small",
|
98 |
+
"add_cross_attention": false,
|
99 |
+
"architectures": [
|
100 |
+
"Dinov2Model"
|
101 |
+
],
|
102 |
+
"attention_probs_dropout_prob": 0.0,
|
103 |
+
"bad_words_ids": null,
|
104 |
+
"begin_suppress_tokens": null,
|
105 |
+
"bos_token_id": null,
|
106 |
+
"chunk_size_feed_forward": 0,
|
107 |
+
"cross_attention_hidden_size": null,
|
108 |
+
"decoder_start_token_id": null,
|
109 |
+
"diversity_penalty": 0.0,
|
110 |
+
"do_sample": false,
|
111 |
+
"drop_path_rate": 0.0,
|
112 |
+
"early_stopping": false,
|
113 |
+
"encoder_no_repeat_ngram_size": 0,
|
114 |
+
"eos_token_id": null,
|
115 |
+
"exponential_decay_length_penalty": null,
|
116 |
+
"finetuning_task": null,
|
117 |
+
"forced_bos_token_id": null,
|
118 |
+
"forced_eos_token_id": null,
|
119 |
+
"hidden_act": "gelu",
|
120 |
+
"hidden_dropout_prob": 0.0,
|
121 |
+
"hidden_size": 384,
|
122 |
+
"id2label": {
|
123 |
+
"0": "LABEL_0",
|
124 |
+
"1": "LABEL_1"
|
125 |
+
},
|
126 |
+
"image_size": 518,
|
127 |
+
"initializer_range": 0.02,
|
128 |
+
"is_decoder": false,
|
129 |
+
"is_encoder_decoder": false,
|
130 |
+
"label2id": {
|
131 |
+
"LABEL_0": 0,
|
132 |
+
"LABEL_1": 1
|
133 |
+
},
|
134 |
+
"layer_norm_eps": 1e-06,
|
135 |
+
"layerscale_value": 1.0,
|
136 |
+
"length_penalty": 1.0,
|
137 |
+
"max_length": 20,
|
138 |
+
"min_length": 0,
|
139 |
+
"mlp_ratio": 4,
|
140 |
+
"model_type": "dinov2",
|
141 |
+
"no_repeat_ngram_size": 0,
|
142 |
+
"num_attention_heads": 6,
|
143 |
+
"num_beam_groups": 1,
|
144 |
+
"num_beams": 1,
|
145 |
+
"num_channels": 3,
|
146 |
+
"num_hidden_layers": 12,
|
147 |
+
"num_return_sequences": 1,
|
148 |
+
"output_attentions": false,
|
149 |
+
"output_hidden_states": false,
|
150 |
+
"output_scores": false,
|
151 |
+
"pad_token_id": null,
|
152 |
+
"patch_size": 14,
|
153 |
+
"prefix": null,
|
154 |
+
"problem_type": null,
|
155 |
+
"pruned_heads": {},
|
156 |
+
"qkv_bias": true,
|
157 |
+
"remove_invalid_values": false,
|
158 |
+
"repetition_penalty": 1.0,
|
159 |
+
"return_dict": true,
|
160 |
+
"return_dict_in_generate": false,
|
161 |
+
"sep_token_id": null,
|
162 |
+
"suppress_tokens": null,
|
163 |
+
"task_specific_params": null,
|
164 |
+
"temperature": 1.0,
|
165 |
+
"tf_legacy_loss": false,
|
166 |
+
"tie_encoder_decoder": false,
|
167 |
+
"tie_word_embeddings": true,
|
168 |
+
"tokenizer_class": null,
|
169 |
+
"top_k": 50,
|
170 |
+
"top_p": 1.0,
|
171 |
+
"torch_dtype": "float32",
|
172 |
+
"torchscript": false,
|
173 |
+
"transformers_version": "4.32.0.dev0",
|
174 |
+
"typical_p": 1.0,
|
175 |
+
"use_bfloat16": false,
|
176 |
+
"use_swiglu_ffn": false
|
177 |
+
},
|
178 |
+
"vision_pooling_mode": "max"
|
179 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8c1a74eb8ad11a602187aec925f1a8efadeadd307c78ddb22afc032aa2cf508
|
3 |
+
size 223489116
|
modelling.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AUTOGENERATED! DO NOT EDIT! File to edit: ../notebooks/12_modelling.ipynb.
|
2 |
+
|
3 |
+
# %% auto 0
|
4 |
+
__all__ = ['VTDEConfig', 'VTDEModel']
|
5 |
+
|
6 |
+
# %% ../notebooks/12_modelling.ipynb 1
|
7 |
+
from transformers.models.clip.modeling_clip import CLIPOutput, clip_loss
|
8 |
+
from typing import Optional, Tuple, Union
|
9 |
+
from transformers import VisionTextDualEncoderConfig, AutoModel, PreTrainedModel, VisionTextDualEncoderModel
|
10 |
+
import torch
|
11 |
+
|
12 |
+
class VTDEConfig(VisionTextDualEncoderConfig):
|
13 |
+
model_type = "vtde"
|
14 |
+
|
15 |
+
def __init__(self, projection_dim=512, logit_scale_init_value=2.6592,
|
16 |
+
text_pooling_mode='mean',
|
17 |
+
vision_pooling_mode='max',
|
18 |
+
**kwargs):
|
19 |
+
"""
|
20 |
+
pooling_mode in ['mean', 'max', 'cls']
|
21 |
+
https://arxiv.org/pdf/2210.09996.pdf
|
22 |
+
https://github.com/kahnchana/clippy/blob/3c102c29c32f7c66c6e52e09b795fe9c061bbb03/src/open_clip/hf_model.py#L56
|
23 |
+
"""
|
24 |
+
self.text_pooling_mode = text_pooling_mode
|
25 |
+
self.vision_pooling_mode = vision_pooling_mode
|
26 |
+
super().__init__(projection_dim, logit_scale_init_value, **kwargs)
|
27 |
+
|
28 |
+
class VTDEModel(VisionTextDualEncoderModel):
|
29 |
+
config_class = VTDEConfig
|
30 |
+
base_model_prefix = "vtde"
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
config: Optional[VTDEConfig] = None,
|
35 |
+
vision_model: Optional[PreTrainedModel] = None,
|
36 |
+
text_model: Optional[PreTrainedModel] = None,
|
37 |
+
):
|
38 |
+
# You can customize the constructor if needed
|
39 |
+
super().__init__(config, vision_model, text_model)
|
40 |
+
self.text_pooling_mode = config.text_pooling_mode
|
41 |
+
self.vision_pooling_mode = config.vision_pooling_mode
|
42 |
+
|
43 |
+
def get_text_features(
|
44 |
+
self,
|
45 |
+
input_ids=None,
|
46 |
+
attention_mask=None,
|
47 |
+
position_ids=None,
|
48 |
+
token_type_ids=None,
|
49 |
+
output_attentions=None,
|
50 |
+
output_hidden_states=None,
|
51 |
+
return_dict=None,
|
52 |
+
):
|
53 |
+
text_outputs = self.text_model(
|
54 |
+
input_ids=input_ids,
|
55 |
+
attention_mask=attention_mask,
|
56 |
+
token_type_ids=token_type_ids,
|
57 |
+
position_ids=position_ids,
|
58 |
+
output_attentions=output_attentions,
|
59 |
+
output_hidden_states=output_hidden_states,
|
60 |
+
return_dict=return_dict,
|
61 |
+
)
|
62 |
+
if self.text_pooling_mode == 'cls':
|
63 |
+
pooled_output = text_outputs[1]
|
64 |
+
elif self.text_pooling_mode == 'mean':
|
65 |
+
pooled_output = torch.mean(text_outputs[0], dim=1)
|
66 |
+
elif self.text_pooling_mode == 'max':
|
67 |
+
pooled_output = torch.max(text_outputs[0], dim=1)[0]
|
68 |
+
elif self.text_pooling_mode == 'norm':
|
69 |
+
"""we select the patch with the largest norm"""
|
70 |
+
last_hidden_states = text_outputs[0]
|
71 |
+
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1)
|
72 |
+
max_norm_idx = torch.argmax(patch_norms, dim=1)
|
73 |
+
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :]
|
74 |
+
else:
|
75 |
+
"We want to raise the name of the pooling mode"
|
76 |
+
raise NotImplementedError
|
77 |
+
|
78 |
+
text_features = self.text_projection(pooled_output)
|
79 |
+
|
80 |
+
return text_features
|
81 |
+
|
82 |
+
def get_image_features(
|
83 |
+
self,
|
84 |
+
pixel_values=None,
|
85 |
+
output_attentions=None,
|
86 |
+
output_hidden_states=None,
|
87 |
+
return_dict=None,
|
88 |
+
):
|
89 |
+
vision_outputs = self.vision_model(
|
90 |
+
pixel_values=pixel_values,
|
91 |
+
output_attentions=output_attentions,
|
92 |
+
output_hidden_states=output_hidden_states,
|
93 |
+
return_dict=return_dict,
|
94 |
+
)
|
95 |
+
|
96 |
+
if self.vision_pooling_mode == 'cls':
|
97 |
+
pooled_output = vision_outputs[1]
|
98 |
+
elif self.vision_pooling_mode == 'mean':
|
99 |
+
pooled_output = torch.mean(vision_outputs[0], dim=1)
|
100 |
+
elif self.vision_pooling_mode == 'max':
|
101 |
+
pooled_output = torch.max(vision_outputs[0], dim=1)[0]
|
102 |
+
elif self.vision_pooling_mode == 'norm':
|
103 |
+
"""we select the patch with the largest norm"""
|
104 |
+
last_hidden_states = vision_outputs[0]
|
105 |
+
patch_norms = torch.norm(last_hidden_states[:, 1:, :], dim=-1)
|
106 |
+
max_norm_idx = torch.argmax(patch_norms, dim=1)
|
107 |
+
pooled_output = last_hidden_states[:, max_norm_idx, :][:, 0, :]
|
108 |
+
else:
|
109 |
+
raise NotImplementedError
|
110 |
+
|
111 |
+
image_features = self.visual_projection(pooled_output)
|
112 |
+
|
113 |
+
return image_features
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
input_ids: Optional[torch.LongTensor] = None,
|
118 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
119 |
+
attention_mask: Optional[torch.Tensor] = None,
|
120 |
+
position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
return_loss: Optional[bool] = None,
|
122 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
123 |
+
output_attentions: Optional[bool] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
|
127 |
+
|
128 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
129 |
+
|
130 |
+
image_embeds = self.get_image_features(
|
131 |
+
pixel_values=pixel_values,
|
132 |
+
output_attentions=output_attentions,
|
133 |
+
output_hidden_states=output_hidden_states,
|
134 |
+
return_dict=return_dict,
|
135 |
+
)
|
136 |
+
|
137 |
+
text_embeds = self.get_text_features(
|
138 |
+
input_ids=input_ids,
|
139 |
+
attention_mask=attention_mask,
|
140 |
+
position_ids=position_ids,
|
141 |
+
output_attentions=output_attentions,
|
142 |
+
output_hidden_states=output_hidden_states,
|
143 |
+
return_dict=return_dict,
|
144 |
+
)
|
145 |
+
|
146 |
+
# normalized features
|
147 |
+
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
|
148 |
+
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
149 |
+
|
150 |
+
# cosine similarity as logits
|
151 |
+
logit_scale = self.logit_scale.exp()
|
152 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
153 |
+
logits_per_image = logits_per_text.T
|
154 |
+
|
155 |
+
loss = None
|
156 |
+
if return_loss:
|
157 |
+
loss = clip_loss(logits_per_text)
|
158 |
+
|
159 |
+
if not return_dict:
|
160 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
161 |
+
return ((loss,) + output) if loss is not None else output
|
162 |
+
|
163 |
+
return CLIPOutput(
|
164 |
+
loss=loss,
|
165 |
+
logits_per_image=logits_per_image,
|
166 |
+
logits_per_text=logits_per_text,
|
167 |
+
text_embeds=text_embeds,
|
168 |
+
image_embeds=image_embeds,
|
169 |
+
text_model_output=text_embeds,
|
170 |
+
vision_model_output=image_embeds,
|
171 |
+
)
|
172 |
+
|
173 |
+
VTDEConfig.register_for_auto_class()
|
174 |
+
VTDEModel.register_for_auto_class("AutoModel")
|