File size: 21,594 Bytes
f3ab687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Flax Transformers model for sequence classification on GLUE."""
import argparse
import logging
import os
import random
import time
from itertools import chain
from typing import Any, Callable, Dict, Tuple
import datasets
from datasets import load_dataset, load_metric
import jax
import jax.numpy as jnp
import optax
import transformers
from flax import struct, traverse_util
from flax.jax_utils import replicate, unreplicate
from flax.metrics import tensorboard
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from transformers import AutoConfig, AutoTokenizer, FlaxAutoModelForSequenceClassification, PretrainedConfig
logger = logging.getLogger(__name__)
Array = Any
Dataset = datasets.arrow_dataset.Dataset
PRNGKey = Any
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"swahili_news": ("text", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--task_name",
type=str,
default=None,
help="The name of the glue task to train on.",
choices=list(task_to_keys.keys()),
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded."
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=3, help="A seed for reproducible training.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="If passed, model checkpoints and tensorboard logs will be pushed to the hub",
)
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def create_train_state(
model: FlaxAutoModelForSequenceClassification,
learning_rate_fn: Callable[[int], float],
is_regression: bool,
num_labels: int,
weight_decay: float,
) -> train_state.TrainState:
"""Create initial training state."""
class TrainState(train_state.TrainState):
"""Train state with an Optax optimizer.
The two functions below differ depending on whether the task is classification
or regression.
Args:
logits_fn: Applied to last layer to obtain the logits.
loss_fn: Function to compute the loss.
"""
logits_fn: Callable = struct.field(pytree_node=False)
loss_fn: Callable = struct.field(pytree_node=False)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
tx = optax.adamw(
learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn
)
if is_regression:
def mse_loss(logits, labels):
return jnp.mean((logits[..., 0] - labels) ** 2)
return TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=tx,
logits_fn=lambda logits: logits[..., 0],
loss_fn=mse_loss,
)
else: # Classification.
def cross_entropy_loss(logits, labels):
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
return jnp.mean(xentropy)
return TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=tx,
logits_fn=lambda logits: logits.argmax(-1),
loss_fn=cross_entropy_loss,
)
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
steps_per_epoch = len(dataset) // batch_size
perms = jax.random.permutation(rng, len(dataset))
perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch.
perms = perms.reshape((steps_per_epoch, batch_size))
for perm in perms:
batch = dataset[perm]
batch = {k: jnp.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
def glue_eval_data_collator(dataset: Dataset, batch_size: int):
"""Returns batches of size `batch_size` from `eval dataset`, sharded over all local devices."""
for i in range(len(dataset) // batch_size):
batch = dataset[i * batch_size : (i + 1) * batch_size]
batch = {k: jnp.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
def main():
args = parse_args()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.task_name == "swahili_news":
raw_datasets = load_dataset("swahili_news")
valid_test_split = 10
raw_datasets["validation"] = load_dataset(
"swahili_news",
split=f"train[:{valid_test_split}%]"
)
raw_datasets["train"] = load_dataset(
"swahili_news",
split=f"train[{valid_test_split}%:]"
)
print(f"train: {len(raw_datasets['train'])}, validation: {len(raw_datasets['validation'])},")
elif args.task_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset("glue", args.task_name)
else:
# Loading the dataset from local csv or json file.
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if args.task_name is not None:
is_regression = args.task_name == "stsb"
if not is_regression:
label_list = raw_datasets["train"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
model = FlaxAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, config=config)
# Preprocessing the datasets
if args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
logger.info(
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
"Using it!"
)
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif args.task_name is None:
label_to_id = {v: i for i, v in enumerate(label_list)}
def preprocess_function(examples):
# Tokenize the texts
texts = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*texts, padding="max_length", max_length=args.max_length, truncation=True)
if "label" in examples:
if label_to_id is not None:
# Map labels to IDs (not necessary for GLUE tasks)
result["labels"] = [label_to_id[l] for l in examples["label"]]
else:
# In all cases, rename the column to labels because the model will expect that.
result["labels"] = examples["label"]
return result
processed_datasets = raw_datasets.map(
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
)
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Define a summary writer
summary_writer = tensorboard.SummaryWriter(args.output_dir)
summary_writer.hparams(vars(args))
def write_metric(train_metrics, eval_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
num_epochs = int(args.num_train_epochs)
rng = jax.random.PRNGKey(args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
train_batch_size = args.per_device_train_batch_size * jax.local_device_count()
eval_batch_size = args.per_device_eval_batch_size * jax.local_device_count()
learning_rate_fn = create_learning_rate_fn(
len(train_dataset), train_batch_size, args.num_train_epochs, args.num_warmup_steps, args.learning_rate
)
state = create_train_state(
model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=args.weight_decay
)
# define step functions
def train_step(
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
) -> Tuple[train_state.TrainState, float]:
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
targets = batch.pop("labels")
def loss_fn(params):
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss = state.loss_fn(logits, targets)
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
return new_state, metrics, new_dropout_rng
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))
def eval_step(state, batch):
logits = state.apply_fn(**batch, params=state.params, train=False)[0]
return state.logits_fn(logits)
p_eval_step = jax.pmap(eval_step, axis_name="batch")
if args.task_name == "swahili_news":
metric = load_metric("glue", "sst2")
elif args.task_name is not None:
metric = load_metric("glue", args.task_name)
else:
metric = load_metric("accuracy")
logger.info(f"===== Starting training ({num_epochs} epochs) =====")
train_time = 0
# make sure weights are replicated on each device
state = replicate(state)
for epoch in range(1, num_epochs + 1):
logger.info(f"Epoch {epoch}")
logger.info(" Training...")
train_start = time.time()
train_metrics = []
rng, input_rng = jax.random.split(rng)
# train
for batch in glue_train_data_collator(input_rng, train_dataset, train_batch_size):
state, metrics, dropout_rngs = p_train_step(state, batch, dropout_rngs)
train_metrics.append(metrics)
train_time += time.time() - train_start
logger.info(f" Done! Training metrics: {unreplicate(metrics)}")
logger.info(" Evaluating...")
# evaluate
for batch in glue_eval_data_collator(eval_dataset, eval_batch_size):
labels = batch.pop("labels")
predictions = p_eval_step(state, batch)
metric.add_batch(predictions=chain(*predictions), references=chain(*labels))
# evaluate also on leftover examples (not divisible by batch_size)
num_leftover_samples = len(eval_dataset) % eval_batch_size
# make sure leftover batch is evaluated on one device
if num_leftover_samples > 0 and jax.process_index() == 0:
# take leftover samples
batch = eval_dataset[-num_leftover_samples:]
batch = {k: jnp.array(v) for k, v in batch.items()}
labels = batch.pop("labels")
predictions = eval_step(unreplicate(state), batch)
metric.add_batch(predictions=predictions, references=labels)
eval_metric = metric.compute()
logger.info(f" Done! Eval metrics: {eval_metric}")
cur_step = epoch * (len(train_dataset) // train_batch_size)
write_metric(train_metrics, eval_metric, train_time, cur_step)
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
args.output_dir,
params=params,
push_to_hub=args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch}",
)
if __name__ == "__main__":
main()
|