|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Finetuning a 🤗 Flax Transformers model for sequence classification on GLUE.""" |
|
import argparse |
|
import logging |
|
import os |
|
import random |
|
import time |
|
from itertools import chain |
|
from typing import Any, Callable, Dict, Tuple |
|
|
|
import datasets |
|
from datasets import load_dataset, load_metric |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import optax |
|
import transformers |
|
from flax import struct, traverse_util |
|
from flax.jax_utils import replicate, unreplicate |
|
from flax.metrics import tensorboard |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard |
|
from transformers import AutoConfig, AutoTokenizer, FlaxAutoModelForSequenceClassification, PretrainedConfig |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
Array = Any |
|
Dataset = datasets.arrow_dataset.Dataset |
|
PRNGKey = Any |
|
|
|
|
|
task_to_keys = { |
|
"cola": ("sentence", None), |
|
"mnli": ("premise", "hypothesis"), |
|
"mrpc": ("sentence1", "sentence2"), |
|
"qnli": ("question", "sentence"), |
|
"qqp": ("question1", "question2"), |
|
"rte": ("sentence1", "sentence2"), |
|
"sst2": ("sentence", None), |
|
"swahili_news": ("text", None), |
|
"stsb": ("sentence1", "sentence2"), |
|
"wnli": ("sentence1", "sentence2"), |
|
} |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") |
|
parser.add_argument( |
|
"--task_name", |
|
type=str, |
|
default=None, |
|
help="The name of the glue task to train on.", |
|
choices=list(task_to_keys.keys()), |
|
) |
|
parser.add_argument( |
|
"--train_file", type=str, default=None, help="A csv or a json file containing the training data." |
|
) |
|
parser.add_argument( |
|
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." |
|
) |
|
parser.add_argument( |
|
"--max_length", |
|
type=int, |
|
default=128, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," |
|
" sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
type=str, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
required=True, |
|
) |
|
parser.add_argument( |
|
"--use_slow_tokenizer", |
|
action="store_true", |
|
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", |
|
) |
|
parser.add_argument( |
|
"--per_device_train_batch_size", |
|
type=int, |
|
default=8, |
|
help="Batch size (per device) for the training dataloader.", |
|
) |
|
parser.add_argument( |
|
"--per_device_eval_batch_size", |
|
type=int, |
|
default=8, |
|
help="Batch size (per device) for the evaluation dataloader.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-5, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") |
|
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") |
|
parser.add_argument("--seed", type=int, default=3, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--push_to_hub", |
|
action="store_true", |
|
help="If passed, model checkpoints and tensorboard logs will be pushed to the hub", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
if args.task_name is None and args.train_file is None and args.validation_file is None: |
|
raise ValueError("Need either a task name or a training/validation file.") |
|
else: |
|
if args.train_file is not None: |
|
extension = args.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if args.validation_file is not None: |
|
extension = args.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
|
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
return args |
|
|
|
|
|
def create_train_state( |
|
model: FlaxAutoModelForSequenceClassification, |
|
learning_rate_fn: Callable[[int], float], |
|
is_regression: bool, |
|
num_labels: int, |
|
weight_decay: float, |
|
) -> train_state.TrainState: |
|
"""Create initial training state.""" |
|
|
|
class TrainState(train_state.TrainState): |
|
"""Train state with an Optax optimizer. |
|
|
|
The two functions below differ depending on whether the task is classification |
|
or regression. |
|
|
|
Args: |
|
logits_fn: Applied to last layer to obtain the logits. |
|
loss_fn: Function to compute the loss. |
|
""" |
|
|
|
logits_fn: Callable = struct.field(pytree_node=False) |
|
loss_fn: Callable = struct.field(pytree_node=False) |
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
tx = optax.adamw( |
|
learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn |
|
) |
|
|
|
if is_regression: |
|
|
|
def mse_loss(logits, labels): |
|
return jnp.mean((logits[..., 0] - labels) ** 2) |
|
|
|
return TrainState.create( |
|
apply_fn=model.__call__, |
|
params=model.params, |
|
tx=tx, |
|
logits_fn=lambda logits: logits[..., 0], |
|
loss_fn=mse_loss, |
|
) |
|
else: |
|
|
|
def cross_entropy_loss(logits, labels): |
|
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels)) |
|
return jnp.mean(xentropy) |
|
|
|
return TrainState.create( |
|
apply_fn=model.__call__, |
|
params=model.params, |
|
tx=tx, |
|
logits_fn=lambda logits: logits.argmax(-1), |
|
loss_fn=cross_entropy_loss, |
|
) |
|
|
|
|
|
def create_learning_rate_fn( |
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
steps_per_epoch = train_ds_size // train_batch_size |
|
num_train_steps = steps_per_epoch * num_train_epochs |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): |
|
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" |
|
steps_per_epoch = len(dataset) // batch_size |
|
perms = jax.random.permutation(rng, len(dataset)) |
|
perms = perms[: steps_per_epoch * batch_size] |
|
perms = perms.reshape((steps_per_epoch, batch_size)) |
|
|
|
for perm in perms: |
|
batch = dataset[perm] |
|
batch = {k: jnp.array(v) for k, v in batch.items()} |
|
batch = shard(batch) |
|
|
|
yield batch |
|
|
|
|
|
def glue_eval_data_collator(dataset: Dataset, batch_size: int): |
|
"""Returns batches of size `batch_size` from `eval dataset`, sharded over all local devices.""" |
|
for i in range(len(dataset) // batch_size): |
|
batch = dataset[i * batch_size : (i + 1) * batch_size] |
|
batch = {k: jnp.array(v) for k, v in batch.items()} |
|
batch = shard(batch) |
|
|
|
yield batch |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.task_name == "swahili_news": |
|
raw_datasets = load_dataset("swahili_news") |
|
valid_test_split = 10 |
|
raw_datasets["validation"] = load_dataset( |
|
"swahili_news", |
|
split=f"train[:{valid_test_split}%]" |
|
) |
|
raw_datasets["train"] = load_dataset( |
|
"swahili_news", |
|
split=f"train[{valid_test_split}%:]" |
|
) |
|
print(f"train: {len(raw_datasets['train'])}, validation: {len(raw_datasets['validation'])},") |
|
elif args.task_name is not None: |
|
|
|
raw_datasets = load_dataset("glue", args.task_name) |
|
else: |
|
|
|
data_files = {} |
|
if args.train_file is not None: |
|
data_files["train"] = args.train_file |
|
if args.validation_file is not None: |
|
data_files["validation"] = args.validation_file |
|
extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1] |
|
raw_datasets = load_dataset(extension, data_files=data_files) |
|
|
|
|
|
|
|
|
|
if args.task_name is not None: |
|
is_regression = args.task_name == "stsb" |
|
if not is_regression: |
|
label_list = raw_datasets["train"].features["label"].names |
|
num_labels = len(label_list) |
|
else: |
|
num_labels = 1 |
|
else: |
|
|
|
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] |
|
if is_regression: |
|
num_labels = 1 |
|
else: |
|
|
|
|
|
label_list = raw_datasets["train"].unique("label") |
|
label_list.sort() |
|
num_labels = len(label_list) |
|
|
|
|
|
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) |
|
model = FlaxAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, config=config) |
|
|
|
|
|
if args.task_name is not None: |
|
sentence1_key, sentence2_key = task_to_keys[args.task_name] |
|
else: |
|
|
|
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] |
|
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: |
|
sentence1_key, sentence2_key = "sentence1", "sentence2" |
|
else: |
|
if len(non_label_column_names) >= 2: |
|
sentence1_key, sentence2_key = non_label_column_names[:2] |
|
else: |
|
sentence1_key, sentence2_key = non_label_column_names[0], None |
|
|
|
|
|
label_to_id = None |
|
if ( |
|
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id |
|
and args.task_name is not None |
|
and not is_regression |
|
): |
|
|
|
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} |
|
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): |
|
logger.info( |
|
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. " |
|
"Using it!" |
|
) |
|
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} |
|
else: |
|
logger.warning( |
|
"Your model seems to have been trained with labels, but they don't match the dataset: ", |
|
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." |
|
"\nIgnoring the model labels as a result.", |
|
) |
|
elif args.task_name is None: |
|
label_to_id = {v: i for i, v in enumerate(label_list)} |
|
|
|
def preprocess_function(examples): |
|
|
|
texts = ( |
|
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) |
|
) |
|
result = tokenizer(*texts, padding="max_length", max_length=args.max_length, truncation=True) |
|
|
|
if "label" in examples: |
|
if label_to_id is not None: |
|
|
|
result["labels"] = [label_to_id[l] for l in examples["label"]] |
|
else: |
|
|
|
result["labels"] = examples["label"] |
|
return result |
|
|
|
processed_datasets = raw_datasets.map( |
|
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names |
|
) |
|
|
|
train_dataset = processed_datasets["train"] |
|
eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"] |
|
|
|
|
|
for index in random.sample(range(len(train_dataset)), 3): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
summary_writer = tensorboard.SummaryWriter(args.output_dir) |
|
summary_writer.hparams(vars(args)) |
|
|
|
def write_metric(train_metrics, eval_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
num_epochs = int(args.num_train_epochs) |
|
rng = jax.random.PRNGKey(args.seed) |
|
dropout_rngs = jax.random.split(rng, jax.local_device_count()) |
|
|
|
train_batch_size = args.per_device_train_batch_size * jax.local_device_count() |
|
eval_batch_size = args.per_device_eval_batch_size * jax.local_device_count() |
|
|
|
learning_rate_fn = create_learning_rate_fn( |
|
len(train_dataset), train_batch_size, args.num_train_epochs, args.num_warmup_steps, args.learning_rate |
|
) |
|
|
|
state = create_train_state( |
|
model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=args.weight_decay |
|
) |
|
|
|
|
|
def train_step( |
|
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey |
|
) -> Tuple[train_state.TrainState, float]: |
|
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" |
|
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) |
|
targets = batch.pop("labels") |
|
|
|
def loss_fn(params): |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss = state.loss_fn(logits, targets) |
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(loss_fn) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
new_state = state.apply_gradients(grads=grad) |
|
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") |
|
return new_state, metrics, new_dropout_rng |
|
|
|
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) |
|
|
|
def eval_step(state, batch): |
|
logits = state.apply_fn(**batch, params=state.params, train=False)[0] |
|
return state.logits_fn(logits) |
|
|
|
p_eval_step = jax.pmap(eval_step, axis_name="batch") |
|
|
|
if args.task_name == "swahili_news": |
|
metric = load_metric("glue", "sst2") |
|
elif args.task_name is not None: |
|
metric = load_metric("glue", args.task_name) |
|
else: |
|
metric = load_metric("accuracy") |
|
|
|
logger.info(f"===== Starting training ({num_epochs} epochs) =====") |
|
train_time = 0 |
|
|
|
|
|
state = replicate(state) |
|
|
|
for epoch in range(1, num_epochs + 1): |
|
logger.info(f"Epoch {epoch}") |
|
logger.info(" Training...") |
|
|
|
train_start = time.time() |
|
train_metrics = [] |
|
rng, input_rng = jax.random.split(rng) |
|
|
|
|
|
for batch in glue_train_data_collator(input_rng, train_dataset, train_batch_size): |
|
state, metrics, dropout_rngs = p_train_step(state, batch, dropout_rngs) |
|
train_metrics.append(metrics) |
|
train_time += time.time() - train_start |
|
logger.info(f" Done! Training metrics: {unreplicate(metrics)}") |
|
|
|
logger.info(" Evaluating...") |
|
|
|
|
|
for batch in glue_eval_data_collator(eval_dataset, eval_batch_size): |
|
labels = batch.pop("labels") |
|
predictions = p_eval_step(state, batch) |
|
metric.add_batch(predictions=chain(*predictions), references=chain(*labels)) |
|
|
|
|
|
num_leftover_samples = len(eval_dataset) % eval_batch_size |
|
|
|
|
|
if num_leftover_samples > 0 and jax.process_index() == 0: |
|
|
|
batch = eval_dataset[-num_leftover_samples:] |
|
batch = {k: jnp.array(v) for k, v in batch.items()} |
|
|
|
labels = batch.pop("labels") |
|
predictions = eval_step(unreplicate(state), batch) |
|
metric.add_batch(predictions=predictions, references=labels) |
|
|
|
eval_metric = metric.compute() |
|
logger.info(f" Done! Eval metrics: {eval_metric}") |
|
|
|
cur_step = epoch * (len(train_dataset) // train_batch_size) |
|
write_metric(train_metrics, eval_metric, train_time, cur_step) |
|
|
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) |
|
model.save_pretrained( |
|
args.output_dir, |
|
params=params, |
|
push_to_hub=args.push_to_hub, |
|
commit_message=f"Saving weights and logs of epoch {epoch}", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|