Adding initial files
Browse files- README.md +55 -0
- config.json +30 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- bookcorpus
|
6 |
+
- wikipedia
|
7 |
+
- cc_news
|
8 |
+
---
|
9 |
+
|
10 |
+
# BigBird base model
|
11 |
+
|
12 |
+
BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.
|
13 |
+
|
14 |
+
It is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird).
|
15 |
+
|
16 |
+
Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team.
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts.
|
21 |
+
|
22 |
+
## How to use `TODO: Update`
|
23 |
+
|
24 |
+
Here is how to use this model to get the features of a given text in Flax:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import BigBirdTokenizer, FlaxBigBirdModel
|
28 |
+
|
29 |
+
model_id = "flax-community/bigband"
|
30 |
+
|
31 |
+
# by default its in `block_sparse` mode with num_random_blocks=3, block_size=64
|
32 |
+
model = FlaxBigBirdModel.from_pretrained(model_id)
|
33 |
+
|
34 |
+
# you can change `attention_type` to full attention like this:
|
35 |
+
model = FlaxBigBirdModel.from_pretrained(model_id, attention_type="original_full")
|
36 |
+
|
37 |
+
# you can change `block_size` & `num_random_blocks` like this:
|
38 |
+
model = FlaxBigBirdModel.from_pretrained(model_id, block_size=16, num_random_blocks=2)
|
39 |
+
|
40 |
+
tokenizer = BigBirdTokenizer.from_pretrained(model_id)
|
41 |
+
|
42 |
+
text = "Replace me by any text you'd like."
|
43 |
+
inputs = tokenizer(text, return_tensors="jax")
|
44 |
+
output = model(**inputs)
|
45 |
+
```
|
46 |
+
|
47 |
+
## Training Data `TODO: Update`
|
48 |
+
|
49 |
+
This model is pre-trained on four publicly available datasets: **Books**, **CC-News**, **Stories** and **Wikipedia**. It used same sentencepiece vocabulary as RoBERTa (which is in turn borrowed from GPT2).
|
50 |
+
|
51 |
+
## Training Procedure `TODO: Update`
|
52 |
+
|
53 |
+
Document longer than 4096 were split into multiple documents and documents that were much smaller than 4096 were joined. Following the original BERT training, 15% of tokens were masked and model is trained to predict the mask.
|
54 |
+
|
55 |
+
Model is warm started from RoBERTa’s checkpoint.
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BigBirdForPreTraining"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"attention_type": "block_sparse",
|
7 |
+
"block_size": 64,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu_new",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-12,
|
17 |
+
"max_position_embeddings": 4096,
|
18 |
+
"model_type": "big_bird",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"num_random_blocks": 3,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"rescale_embeddings": false,
|
25 |
+
"transformers_version": "4.4.0.dev0",
|
26 |
+
"type_vocab_size": 2,
|
27 |
+
"use_bias": true,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 50358
|
30 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "[SEP]", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "[CLS]", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "[MASK]", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdc81e1fc9d42e0c08b86d5b280d05d7c5e9747c4231c648f2b56b8e1d893c82
|
3 |
+
size 845731
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "[SEP]", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "[MASK]", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "[CLS]", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 4096, "name_or_path": "google/bigbird-roberta-large"}
|