jackal1586 commited on
Commit
24de675
·
1 Parent(s): a4273a3
Files changed (3) hide show
  1. code-mt5.log +0 -0
  2. flax_model.msgpack +1 -1
  3. log_eval.py +92 -0
code-mt5.log ADDED
The diff for this file is too large to render. See raw diff
 
flax_model.msgpack CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f142bffda2b1fe16bbd4508ff0a179a708c5060fa450834a48e45fbc1deba3e
3
  size 965944223
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb281ba98bce354df2dfefcda04cc61aec662cc3bee18236ec270c34f4c24542
3
  size 965944223
log_eval.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # To add a new cell, type '# %%'
2
+ # To add a new markdown cell, type '# %% [markdown]'
3
+ # %%
4
+ from IPython import get_ipython
5
+
6
+ # %%
7
+ # get_ipython().system("ls -l ../logs")
8
+
9
+
10
+ # %%
11
+ # get_ipython().system(" cat ../logs/model_big.log")
12
+
13
+
14
+ # %%
15
+ path = "code-mt5.log"
16
+ losses = []
17
+ steps = []
18
+ eval_steps = []
19
+ eval_losses = []
20
+ eval_accs = []
21
+ learning_rate = []
22
+ with open(path, "r") as filePtr:
23
+ for line in filePtr:
24
+ print(line)
25
+ toks = line.split()
26
+ if toks[0] == "Step...":
27
+ if "Learning" in toks:
28
+ losses.append(float(toks[4].split(",")[0]))
29
+ steps.append(int(toks[1].split("(")[1]))
30
+ learning_rate.append(float(toks[-1].split(")")[0]))
31
+ if "Acc:" in toks:
32
+ eval_steps.append(int(toks[1].split("(")[1]))
33
+ eval_losses.append(float(toks[4].split(",")[0]))
34
+ eval_accs.append(float(toks[-1].split(")")[0]))
35
+
36
+
37
+ # %%
38
+ import matplotlib.pyplot as plt
39
+
40
+ # %%
41
+ # print(losses)
42
+ # print(steps)
43
+
44
+
45
+ # %%
46
+ print("Steps done: ", len(losses) * 100)
47
+
48
+
49
+ # %%
50
+ print("last 30 losses: ", losses[-30:])
51
+
52
+
53
+ # %%
54
+ plt.plot(steps, losses)
55
+ plt.show()
56
+
57
+
58
+ # %%
59
+ min_loss, at_step = 1e10, None
60
+ for step, loss in zip(steps, losses):
61
+ if loss < min_loss:
62
+ min_loss = loss
63
+ at_step = step
64
+
65
+ print("min loss: {} at step {}".format(min_loss, at_step))
66
+
67
+
68
+ # %%
69
+ print(eval_losses)
70
+
71
+
72
+ # %%
73
+ plt.plot(eval_steps, eval_losses)
74
+ plt.show()
75
+
76
+
77
+ # %%
78
+ print(eval_accs)
79
+
80
+
81
+ # %%
82
+ plt.plot(eval_steps, eval_accs)
83
+ plt.show()
84
+
85
+
86
+ # %%
87
+ plt.plot(steps, learning_rate)
88
+ plt.show()
89
+
90
+
91
+ # %%
92
+