[tokenizer](#tokenizer) | [model](#model) | [datasets](#datasets) | [plots](#plots) | [fine tuning](#fine-tuning) # Tokenizer {#tokenizer} We trained our tokenizer using [sentencepiece](https://github.com/google/sentencepiece)'s unigram tokenizer. Then loaded the tokenizer as MT5TokenizerFast. ## Model {#model} We used [MT5-base](https://huggingface.co/google/mt5-base) model. ## Datasets {#datasets} We used [Code Search Net](https://huggingface.co/datasets/code_search_net)'s dataset and some scrapped data from internet to train the model. We maintained a list of datasets where each dataset had codes of same language. ## Plots {#plots} [train loss](#train_loss) | [evaluation loss](#eval_loss) | [evaluation accuracy](#eval_acc) | [learning rate](#lrs) ### Train loss {#train_loss} ![train loss](train_loss.png) ### Evaluation loss {#eval_loss} ![eval loss](eval_loss.png) ### Evaluation accuracy {#eval_acc} ![eval accuracy](eval_accuracy.png) ### Learning rate {#lrs} ![learning rate](learning_rate.png) ## Fine tuning {#fine-tuning} We fine tuned the model with [CodeXGLUE code-to-code-trans dataset](https://huggingface.co/datasets/code_x_glue_cc_code_to_code_trans), and scrapper data.