import ast import logging import os import sys from dataclasses import dataclass, field import pandas as pd from sklearn.model_selection import train_test_split from tqdm import tqdm from typing import Dict, List, Optional, Tuple from datasets import load_dataset from transformers import ( HfArgumentParser, ) from data_utils import ( filter_by_lang_regex, filter_by_num_tokens, filter_by_num_sents, filter_by_adv, normalizer ) logger = logging.getLogger(__name__) @dataclass class DataArguments: """ Arguments to which dataset we are going to set up. """ output_dir: str = field( default=".", metadata={"help": "The output directory where the config will be written."}, ) dataset_name: str = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) def main(): parser = HfArgumentParser([DataArguments]) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] else: data_args = parser.parse_args_into_dataclasses()[0] # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO) logger.info(f"Preparing the dataset") if data_args.dataset_name is not None: dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=data_args.cache_dir, split="train" ) else: data_files = {"train": data_args.train_file} extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" dataset = load_dataset( extension, data_files=data_files, delimiter="\t", cache_dir=data_args.cache_dir, ) logger.info(f"dataset: {dataset}") def data_preparation(item_dict): if "text" not in item_dict: return None text = item_dict["text"] status = filter_by_lang_regex(text, ratio=0.75) if not status: return None status = filter_by_num_tokens(text, gt=64) if not status: return None status = filter_by_num_sents(text, gt=2) if not status: return None status = filter_by_adv(text, ratio=50) if not status: return None text = normalizer(text) return {"text": text} data_dict = [] for item in tqdm(dataset, position=0, total=len(dataset)): item = data_preparation(item) if item: data_dict.append(item) data_df = pd.DataFrame(data_dict) logger.info(f"Preparation - [before] consists of {len(dataset)} records!") logger.info(f"Preparation - [after] consists of {len(data_df)} records!") train, test = train_test_split(data_df, test_size=0.01, random_state=101) train = train.reset_index(drop=True) test = test.reset_index(drop=True) logger.info(f"Preparation of [train] set consists of {len(train)} records!") logger.info(f"Preparation of [test] set consists of {len(test)} records!") os.makedirs(data_args.output_dir, exist_ok=True) train.to_csv(os.path.join(data_args.output_dir, "train.csv"), sep="\t", encoding="utf-8", index=False) test.to_csv(os.path.join(data_args.output_dir, "test.csv"), sep="\t", encoding="utf-8", index=False) logger.info(f"Data saved here {data_args.output_dir}") if __name__ == '__main__': main()