File size: 13,348 Bytes
e8c4ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Helper functions/classes for model definition."""

import functools
from typing import Any, Callable

from flax import linen as nn
import jax
from jax import lax
from jax import random
import jax.numpy as jnp


class MLP(nn.Module):
    """A simple MLP."""
    net_depth: int = 8  # The depth of the first part of MLP.
    net_width: int = 256  # The width of the first part of MLP.
    net_depth_condition: int = 1  # The depth of the second part of MLP.
    net_width_condition: int = 128  # The width of the second part of MLP.
    net_activation: Callable[..., Any] = nn.relu  # The activation function.
    skip_layer: int = 4  # The layer to add skip layers to.
    num_rgb_channels: int = 3  # The number of RGB channels.
    num_sigma_channels: int = 1  # The number of sigma channels.

    @nn.compact
    def __call__(self, x, condition=None):
        """
        Evaluate the MLP.

        Args:
            x: jnp.ndarray(float32), [batch, num_samples, feature], points.
            condition: jnp.ndarray(float32), [batch, feature], if not None, this
                variable will be part of the input to the second part of the MLP
                concatenated with the output vector of the first part of the MLP. If
                None, only the first part of the MLP will be used with input x. In the
                original paper, this variable is the view direction.

        Returns:
            raw_rgb: jnp.ndarray(float32), with a shape of
                [batch, num_samples, num_rgb_channels].
            raw_sigma: jnp.ndarray(float32), with a shape of
                [batch, num_samples, num_sigma_channels].
        """
        feature_dim = x.shape[-1]
        num_samples = x.shape[1]
        x = x.reshape([-1, feature_dim])
        dense_layer = functools.partial(
            nn.Dense, kernel_init=jax.nn.initializers.glorot_uniform())
        inputs = x

        dtype = x.dtype
        for i in range(self.net_depth):
            x = dense_layer(self.net_width, dtype = dtype)(x)
            x = self.net_activation(x)
            if i % self.skip_layer == 0 and i > 0:
                x = jnp.concatenate([x, inputs], axis=-1)
        raw_sigma = dense_layer(self.num_sigma_channels, dtype = dtype)(x).reshape(
            [-1, num_samples, self.num_sigma_channels])

        if condition is not None:
            # Output of the first part of MLP.
            bottleneck = dense_layer(self.net_width, dtype = dtype)(x)
            # Broadcast condition from [batch, feature] to
            # [batch, num_samples, feature] since all the samples along the same ray
            # have the same viewdir.
            condition = jnp.tile(condition[:, None, :], (1, num_samples, 1))
            # Collapse the [batch, num_samples, feature] tensor to
            # [batch * num_samples, feature] so that it can be fed into nn.Dense.
            condition = condition.reshape([-1, condition.shape[-1]])
            x = jnp.concatenate([bottleneck, condition], axis=-1)
            # Here use 1 extra layer to align with the original nerf model.
            for i in range(self.net_depth_condition):
                x = dense_layer(self.net_width_condition, dtype = dtype)(x)
                x = self.net_activation(x)
        raw_rgb = dense_layer(self.num_rgb_channels, dtype = dtype)(x).reshape(
            [-1, num_samples, self.num_rgb_channels])
        return raw_rgb, raw_sigma


def cast_rays(z_vals, origins, directions):
    return origins[..., None, :] + z_vals[..., None] * directions[..., None, :]


def sample_along_rays(key, origins, directions, num_samples, near, far,
                      randomized, lindisp):
    """
    Stratified sampling along the rays.

    Args:
        key: jnp.ndarray, random generator key.
        origins: jnp.ndarray(float32), [batch_size, 3], ray origins.
        directions: jnp.ndarray(float32), [batch_size, 3], ray directions.
        num_samples: int.
        near: float, near clip.
        far: float, far clip.
        randomized: bool, use randomized stratified sampling.
        lindisp: bool, sampling linearly in disparity rather than depth.

    Returns:
        z_vals: jnp.ndarray, [batch_size, num_samples], sampled z values.
        points: jnp.ndarray, [batch_size, num_samples, 3], sampled points.
    """
    batch_size = origins.shape[0]

    dtype = origins.dtype

    t_vals = jnp.linspace(0., 1., num_samples, dtype = dtype)
    if lindisp:
        z_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * t_vals)
    else:
        z_vals = near * (1. - t_vals) + far * t_vals

    if randomized:
        mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
        upper = jnp.concatenate([mids, z_vals[..., -1:]], -1)
        lower = jnp.concatenate([z_vals[..., :1], mids], -1)
        t_rand = random.uniform(key, [batch_size, num_samples])
        z_vals = lower + (upper - lower) * t_rand
    else:
        # Broadcast z_vals to make the returned shape consistent.
        z_vals = jnp.broadcast_to(z_vals[None, ...], [batch_size, num_samples]).astype(dtype)

    coords = cast_rays(z_vals, origins, directions)
    return z_vals, coords


def posenc(x, min_deg, max_deg, legacy_posenc_order=False):
    """
    Cat x with a positional encoding of x with scales 2^[min_deg, max_deg-1].

    Instead of computing [sin(x), cos(x)], we use the trig identity
    cos(x) = sin(x + pi/2) and do one vectorized call to sin([x, x+pi/2]).

    Args:
        x: jnp.ndarray, variables to be encoded. Note that x should be in [-pi, pi].
        min_deg: int, the minimum (inclusive) degree of the encoding.
        max_deg: int, the maximum (exclusive) degree of the encoding.
        legacy_posenc_order: bool, keep the same ordering as the original tf code.

    Returns:
        encoded: jnp.ndarray, encoded variables.
    """
    if min_deg == max_deg:
        return x

    dtype = x.dtype

    scales = jnp.array([2 ** i for i in range(min_deg, max_deg)], dtype = dtype)
    if legacy_posenc_order:
        xb = x[..., None, :] * scales[:, None]
        four_feat = jnp.reshape(
            jnp.sin(jnp.stack([xb, xb + 0.5 * jnp.pi], -2)),
            list(x.shape[:-1]) + [-1])
    else:
        xb = jnp.reshape((x[..., None, :] * scales[:, None]),
                         list(x.shape[:-1]) + [-1])
        four_feat = jnp.sin(jnp.concatenate([xb, xb + 0.5 * jnp.pi], axis=-1))
    return jnp.concatenate([x] + [four_feat], axis=-1)


def volumetric_rendering(rgb, sigma, z_vals, dirs, white_bkgd):
    """
    Volumetric Rendering Function.

    Args:
        rgb: jnp.ndarray(float32), color, [batch_size, num_samples, 3]
        sigma: jnp.ndarray(float32), density, [batch_size, num_samples, 1].
        z_vals: jnp.ndarray(float32), [batch_size, num_samples].
        dirs: jnp.ndarray(float32), [batch_size, 3].
        white_bkgd: bool.

    Returns:
        comp_rgb: jnp.ndarray(float32), [batch_size, 3].
        disp: jnp.ndarray(float32), [batch_size].
        acc: jnp.ndarray(float32), [batch_size].
        weights: jnp.ndarray(float32), [batch_size, num_samples]
    """
    dtype = rgb.dtype
    
    eps = jnp.array(1e-10, dtype = dtype)
    dists = jnp.concatenate([
        z_vals[..., 1:] - z_vals[..., :-1],
        jnp.broadcast_to(jnp.array([1e10]),#, dtype = dtype), 
            z_vals[..., :1].shape)
    ], -1)
    dists = dists * jnp.linalg.norm(dirs[..., None, :], axis=-1)
    # Note that we're quietly turning sigma from [..., 0] to [...].
    alpha = 1.0 - jnp.exp(-sigma[..., 0] * dists)
    accum_prod = jnp.concatenate([
        jnp.ones_like(alpha[..., :1], alpha.dtype),
        jnp.cumprod(1.0 - alpha[..., :-1] + eps, axis=-1)
    ],
        axis=-1)
    weights = alpha * accum_prod
    weights = weights.astype(dtype)

    comp_rgb = (weights[..., None] * rgb).sum(axis=-2)
    depth = (weights * z_vals).sum(axis=-1)
    acc = weights.sum(axis=-1)
    # Equivalent to (but slightly more efficient and stable than):
    #  disp = 1 / max(eps, where(acc > eps, depth / acc, 0))
    inv_eps = 1 / eps
    disp = acc / depth
    disp = jnp.where((disp > 0) & (disp < inv_eps) & (acc > eps), disp, inv_eps)
    if white_bkgd:
        comp_rgb = comp_rgb + (1. - acc[..., None])
    return comp_rgb, disp, acc, weights


def piecewise_constant_pdf(key, bins, weights, num_samples, randomized):
    """
    Piecewise-Constant PDF sampling.

    Args:
        key: jnp.ndarray(float32), [2,], random number generator.
        bins: jnp.ndarray(float32), [batch_size, num_bins + 1].
        weights: jnp.ndarray(float32), [batch_size, num_bins].
        num_samples: int, the number of samples.
        randomized: bool, use randomized samples.

    Returns:
        z_samples: jnp.ndarray(float32), [batch_size, num_samples].
    """
    # Pad each weight vector (only if necessary) to bring its sum to `eps`. This
    # avoids NaNs when the input is zeros or small, but has no effect otherwise.
    dtype = bins.dtype

    eps = 1e-5
    weight_sum = jnp.sum(weights, axis=-1, keepdims=True)
    padding = jnp.maximum(0, eps - weight_sum)
    weights += padding / weights.shape[-1]
    weight_sum += padding

    # Compute the PDF and CDF for each weight vector, while ensuring that the CDF
    # starts with exactly 0 and ends with exactly 1.
    pdf = weights / weight_sum
    cdf = jnp.minimum(1, jnp.cumsum(pdf[..., :-1], axis=-1))
    cdf = jnp.concatenate([
        jnp.zeros(list(cdf.shape[:-1]) + [1], dtype = dtype), cdf,
        jnp.ones(list(cdf.shape[:-1]) + [1], dtype = dtype)
    ],
        axis=-1)

    # Draw uniform samples.
    if randomized:
        # Note that `u` is in [0, 1) --- it can be zero, but it can never be 1.
        u = random.uniform(key, list(cdf.shape[:-1]) + [num_samples])
    else:
        # Match the behavior of random.uniform() by spanning [0, 1-eps].
        u = jnp.linspace(0., 1. - jnp.finfo(dtype).eps, num_samples, dtype = dtype)
        u = jnp.broadcast_to(u, list(cdf.shape[:-1]) + [num_samples])

    # Identify the location in `cdf` that corresponds to a random sample.
    # The final `True` index in `mask` will be the start of the sampled interval.
    mask = u[..., None, :] >= cdf[..., :, None]

    def find_interval(x):
        # Grab the value where `mask` switches from True to False, and vice versa.
        # This approach takes advantage of the fact that `x` is sorted.
        x0 = jnp.max(jnp.where(mask, x[..., None], x[..., :1, None]), -2)
        x1 = jnp.min(jnp.where(~mask, x[..., None], x[..., -1:, None]), -2)
        return x0, x1

    bins_g0, bins_g1 = find_interval(bins)
    cdf_g0, cdf_g1 = find_interval(cdf)

    t = jnp.clip(jnp.nan_to_num((u - cdf_g0) / (cdf_g1 - cdf_g0), 0), 0, 1)
    samples = bins_g0 + t * (bins_g1 - bins_g0)

    # Prevent gradient from backprop-ing through `samples`.
    return lax.stop_gradient(samples)


def sample_pdf(key, bins, weights, origins, directions, z_vals, num_samples,
               randomized):
    """
    Hierarchical sampling.

    Args:
        key: jnp.ndarray(float32), [2,], random number generator.
        bins: jnp.ndarray(float32), [batch_size, num_bins + 1].
        weights: jnp.ndarray(float32), [batch_size, num_bins].
        origins: jnp.ndarray(float32), [batch_size, 3], ray origins.
        directions: jnp.ndarray(float32), [batch_size, 3], ray directions.
        z_vals: jnp.ndarray(float32), [batch_size, num_coarse_samples].
        num_samples: int, the number of samples.
        randomized: bool, use randomized samples.

    Returns:
        z_vals: jnp.ndarray(float32),
          [batch_size, num_coarse_samples + num_fine_samples].
        points: jnp.ndarray(float32),
          [batch_size, num_coarse_samples + num_fine_samples, 3].
    """
    z_samples = piecewise_constant_pdf(key, bins, weights, num_samples,
                                       randomized)
    # Compute united z_vals and sample points
    z_vals = jnp.sort(jnp.concatenate([z_vals, z_samples], axis=-1), axis=-1)
    coords = cast_rays(z_vals, origins, directions)
    return z_vals, coords


def add_gaussian_noise(key, raw, noise_std, randomized):
    """
    Adds gaussian noise to `raw`, which can used to regularize it.

    Args:
        key: jnp.ndarray(float32), [2,], random number generator.
        raw: jnp.ndarray(float32), arbitrary shape.
        noise_std: float, The standard deviation of the noise to be added.
        randomized: bool, add noise if randomized is True.

    Returns:
        raw + noise: jnp.ndarray(float32), with the same shape as `raw`.
    """
    if (noise_std is not None) and randomized:
        return raw + random.normal(key, raw.shape, dtype=raw.dtype) * noise_std
    else:
        return raw