File size: 18,087 Bytes
e8c4ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Utility functions."""
import collections
import os
from os import path
import pickle
from absl import flags
import flax
import jax
import jax.numpy as jnp
import jax.scipy as jsp
import numpy as np
from PIL import Image
import yaml
from nerf import datasets
BASE_DIR = ""
INTERNAL = False
@flax.struct.dataclass
class TrainState:
optimizer: flax.optim.Optimizer
@flax.struct.dataclass
class Stats:
loss: float
psnr: float
loss_c: float
psnr_c: float
weight_l2: float
Rays = collections.namedtuple("Rays", ("origins", "directions", "viewdirs"))
def namedtuple_map(fn, tup):
"""Apply `fn` to each element of `tup` and cast to `tup`'s namedtuple."""
return type(tup)(*map(fn, tup))
def define_flags():
"""Define flags for both training and evaluation modes."""
flags.DEFINE_string("train_dir", None, "where to store ckpts and logs")
flags.DEFINE_string("data_dir", None, "input data directory.")
flags.DEFINE_string("config", None,
"using config files to set hyperparameters.")
# CLIP part Flags
flags.DEFINE_bool("use_semantic_loss", True,
"whether use semantic loss or not")
flags.DEFINE_string("clip_model_name", "openai/clip-vit-base-patch32", "model type for CLIP")
flags.DEFINE_string("clip_output_dtype", "float32",
"float32/ float16 (float16 for memory saving)")
flags.DEFINE_integer("sc_loss_every", 16,
"no. of steps to take before performing semantic loss evaluation")
flags.DEFINE_float("sc_loss_mult", 1e-3,
"weighting for semantic loss from CLIP")
# Dataset Flags
# TODO(pratuls): rename to dataset_loader and consider cleaning up
flags.DEFINE_enum("dataset", "blender",
list(k for k in datasets.dataset_dict.keys()),
"The type of dataset feed to nerf.")
flags.DEFINE_enum(
"batching", "single_image", ["single_image", "all_images"],
"source of ray sampling when collecting training batch,"
"single_image for sampling from only one image in a batch,"
"all_images for sampling from all the training images.")
flags.DEFINE_bool(
"white_bkgd", True, "using white color as default background."
"(used in the blender dataset only)")
flags.DEFINE_integer("batch_size", 1024,
"the number of rays in a mini-batch (for training).")
flags.DEFINE_integer("factor", 4,
"the downsample factor of images, 0 for no downsample.")
flags.DEFINE_bool("spherify", False, "set for spherical 360 scenes.")
flags.DEFINE_bool(
"render_path", False, "render generated path if set true."
"(used in the llff dataset only)")
flags.DEFINE_integer(
"llffhold", 8, "will take every 1/N images as LLFF test set."
"(used in the llff dataset only)")
flags.DEFINE_bool(
"use_pixel_centers", False,
"If True, generate rays through the center of each pixel. Note: While "
"this is the correct way to handle rays, it is not the way rays are "
"handled in the original NeRF paper. Setting this TRUE yields ~ +1 PSNR "
"compared to Vanilla NeRF.")
# Model Flags
flags.DEFINE_string("model", "nerf", "name of model to use.")
flags.DEFINE_float("near", 2., "near clip of volumetric rendering.")
flags.DEFINE_float("far", 6., "far clip of volumentric rendering.")
flags.DEFINE_integer("net_depth", 8, "depth of the first part of MLP.")
flags.DEFINE_integer("net_width", 256, "width of the first part of MLP.")
flags.DEFINE_integer("net_depth_condition", 1,
"depth of the second part of MLP.")
flags.DEFINE_integer("net_width_condition", 128,
"width of the second part of MLP.")
flags.DEFINE_float("weight_decay_mult", 0, "The multiplier on weight decay")
flags.DEFINE_integer(
"skip_layer", 4, "add a skip connection to the output vector of every"
"skip_layer layers.")
flags.DEFINE_integer("num_rgb_channels", 3, "the number of RGB channels.")
flags.DEFINE_integer("num_sigma_channels", 1,
"the number of density channels.")
flags.DEFINE_bool("randomized", True, "use randomized stratified sampling.")
flags.DEFINE_integer("min_deg_point", 0,
"Minimum degree of positional encoding for points.")
flags.DEFINE_integer("max_deg_point", 10,
"Maximum degree of positional encoding for points.")
flags.DEFINE_integer("deg_view", 4,
"Degree of positional encoding for viewdirs.")
flags.DEFINE_integer(
"num_coarse_samples", 64,
"the number of samples on each ray for the coarse model.")
flags.DEFINE_integer("num_fine_samples", 128,
"the number of samples on each ray for the fine model.")
flags.DEFINE_bool("use_viewdirs", True, "use view directions as a condition.")
flags.DEFINE_float(
"noise_std", None, "std dev of noise added to regularize sigma output."
"(used in the llff dataset only)")
flags.DEFINE_bool("lindisp", False,
"sampling linearly in disparity rather than depth.")
flags.DEFINE_string("net_activation", "relu",
"activation function used within the MLP.")
flags.DEFINE_string("rgb_activation", "sigmoid",
"activation function used to produce RGB.")
flags.DEFINE_string("sigma_activation", "relu",
"activation function used to produce density.")
flags.DEFINE_bool(
"legacy_posenc_order", False,
"If True, revert the positional encoding feature order to an older version of this codebase."
)
# Train Flags
flags.DEFINE_float("lr_init", 5e-4, "The initial learning rate.")
flags.DEFINE_float("lr_final", 5e-6, "The final learning rate.")
flags.DEFINE_integer(
"lr_delay_steps", 0, "The number of steps at the beginning of "
"training to reduce the learning rate by lr_delay_mult")
flags.DEFINE_float(
"lr_delay_mult", 1., "A multiplier on the learning rate when the step "
"is < lr_delay_steps")
flags.DEFINE_float("grad_max_norm", 0.,
"The gradient clipping magnitude (disabled if == 0).")
flags.DEFINE_float("grad_max_val", 0.,
"The gradient clipping value (disabled if == 0).")
flags.DEFINE_integer("max_steps", 1000000,
"the number of optimization steps.")
flags.DEFINE_integer("save_every", 10000,
"the number of steps to save a checkpoint.")
flags.DEFINE_integer("print_every", 100,
"the number of steps between reports to tensorboard.")
flags.DEFINE_integer(
"render_every", 5000, "the number of steps to render a test image,"
"better to be x00 for accurate step time record.")
flags.DEFINE_integer("gc_every", 10000,
"the number of steps to run python garbage collection.")
flags.DEFINE_integer("few_shot", -1,
"the number of images.")
# Eval Flags
flags.DEFINE_bool(
"eval_once", True,
"evaluate the model only once if true, otherwise keeping evaluating new"
"checkpoints if there's any.")
flags.DEFINE_bool("save_output", True,
"save predicted images to disk if True.")
flags.DEFINE_integer(
"chunk", 1024,
"the size of chunks for evaluation inferences, set to the value that"
"fits your GPU/TPU memory.")
flags.DEFINE_bool("generate_gif_only", False,
"in eval.py, we only generate GIF file for the trained model")
def update_flags(args):
"""Update the flags in `args` with the contents of the config YAML file."""
pth = path.join(BASE_DIR, args.config + ".yaml")
with open_file(pth, "r") as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
# Only allow args to be updated if they already exist.
invalid_args = list(set(configs.keys()) - set(dir(args)))
if invalid_args:
raise ValueError(f"Invalid args {invalid_args} in {pth}.")
args.__dict__.update(configs)
def open_file(pth, mode="r"):
if not INTERNAL:
return open(pth, mode=mode)
def file_exists(pth):
if not INTERNAL:
return path.exists(pth)
def listdir(pth):
if not INTERNAL:
return os.listdir(pth)
def isdir(pth):
if not INTERNAL:
return path.isdir(pth)
def makedirs(pth):
if not INTERNAL:
os.makedirs(pth)
def render_image(render_fn, rays, rng, normalize_disp, chunk=8192):
"""Render all the pixels of an image (in test mode).
Args:
render_fn: function, jit-ed render function.
rays: a `Rays` namedtuple, the rays to be rendered.
rng: jnp.ndarray, random number generator (used in training mode only).
normalize_disp: bool, if true then normalize `disp` to [0, 1].
chunk: int, the size of chunks to render sequentially.
Returns:
rgb: jnp.ndarray, rendered color image.
disp: jnp.ndarray, rendered disparity image.
acc: jnp.ndarray, rendered accumulated weights per pixel.
"""
height, width = rays[0].shape[:2]
num_rays = height * width
rays = namedtuple_map(lambda r: r.reshape((num_rays, -1)), rays)
unused_rng, key_0, key_1 = jax.random.split(rng, 3)
host_id = jax.host_id()
results = []
for i in range(0, num_rays, chunk):
# pylint: disable=cell-var-from-loop
chunk_rays = namedtuple_map(lambda r: r[i:i + chunk], rays)
chunk_size = chunk_rays[0].shape[0]
rays_remaining = chunk_size % jax.device_count()
if rays_remaining != 0:
padding = jax.device_count() - rays_remaining
chunk_rays = namedtuple_map(
lambda r: jnp.pad(r, ((0, padding), (0, 0)), mode="edge"), chunk_rays)
else:
padding = 0
# After padding the number of chunk_rays is always divisible by
# host_count.
rays_per_host = chunk_rays[0].shape[0] // jax.process_count()
start, stop = host_id * rays_per_host, (host_id + 1) * rays_per_host
chunk_rays = namedtuple_map(lambda r: shard(r[start:stop]), chunk_rays)
chunk_results = render_fn(key_0, key_1, chunk_rays)[-1]
results.append([unshard(x, padding) for x in chunk_results])
# pylint: enable=cell-var-from-loop
rgb, disp, acc = [jnp.concatenate(r, axis=0) for r in zip(*results)]
# Normalize disp for visualization for ndc_rays in llff front-facing scenes.
if normalize_disp:
disp = (disp - disp.min()) / (disp.max() - disp.min())
return (rgb.reshape((height, width, -1)), disp.reshape(
(height, width, -1)), acc.reshape((height, width, -1)))
def compute_psnr(mse):
"""Compute psnr value given mse (we assume the maximum pixel value is 1).
Args:
mse: float, mean square error of pixels.
Returns:
psnr: float, the psnr value.
"""
return -10. * jnp.log(mse) / jnp.log(10.)
def compute_ssim(img0,
img1,
max_val,
filter_size=11,
filter_sigma=1.5,
k1=0.01,
k2=0.03,
return_map=False):
"""Computes SSIM from two images.
This function was modeled after tf.image.ssim, and should produce comparable
output.
Args:
img0: array. An image of size [..., width, height, num_channels].
img1: array. An image of size [..., width, height, num_channels].
max_val: float > 0. The maximum magnitude that `img0` or `img1` can have.
filter_size: int >= 1. Window size.
filter_sigma: float > 0. The bandwidth of the Gaussian used for filtering.
k1: float > 0. One of the SSIM dampening parameters.
k2: float > 0. One of the SSIM dampening parameters.
return_map: Bool. If True, will cause the per-pixel SSIM "map" to returned
Returns:
Each image's mean SSIM, or a tensor of individual values if `return_map`.
"""
# Construct a 1D Gaussian blur filter.
hw = filter_size // 2
shift = (2 * hw - filter_size + 1) / 2
f_i = ((jnp.arange(filter_size) - hw + shift) / filter_sigma) ** 2
filt = jnp.exp(-0.5 * f_i)
filt /= jnp.sum(filt)
# Blur in x and y (faster than the 2D convolution).
filt_fn1 = lambda z: jsp.signal.convolve2d(z, filt[:, None], mode="valid")
filt_fn2 = lambda z: jsp.signal.convolve2d(z, filt[None, :], mode="valid")
# Vmap the blurs to the tensor size, and then compose them.
num_dims = len(img0.shape)
map_axes = tuple(list(range(num_dims - 3)) + [num_dims - 1])
for d in map_axes:
filt_fn1 = jax.vmap(filt_fn1, in_axes=d, out_axes=d)
filt_fn2 = jax.vmap(filt_fn2, in_axes=d, out_axes=d)
filt_fn = lambda z: filt_fn1(filt_fn2(z))
mu0 = filt_fn(img0)
mu1 = filt_fn(img1)
mu00 = mu0 * mu0
mu11 = mu1 * mu1
mu01 = mu0 * mu1
sigma00 = filt_fn(img0 ** 2) - mu00
sigma11 = filt_fn(img1 ** 2) - mu11
sigma01 = filt_fn(img0 * img1) - mu01
# Clip the variances and covariances to valid values.
# Variance must be non-negative:
sigma00 = jnp.maximum(0., sigma00)
sigma11 = jnp.maximum(0., sigma11)
sigma01 = jnp.sign(sigma01) * jnp.minimum(
jnp.sqrt(sigma00 * sigma11), jnp.abs(sigma01))
c1 = (k1 * max_val) ** 2
c2 = (k2 * max_val) ** 2
numer = (2 * mu01 + c1) * (2 * sigma01 + c2)
denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2)
ssim_map = numer / denom
ssim = jnp.mean(ssim_map, list(range(num_dims - 3, num_dims)))
return ssim_map if return_map else ssim
def save_img(img, pth):
"""Save an image to disk.
Args:
img: jnp.ndarry, [height, width, channels], img will be clipped to [0, 1]
before saved to pth.
pth: string, path to save the image to.
"""
with open_file(pth, "wb") as imgout:
Image.fromarray(np.array(
(np.clip(img, 0., 1.) * 255.).astype(jnp.uint8))).save(imgout, "PNG")
def learning_rate_decay(step,
lr_init,
lr_final,
max_steps,
lr_delay_steps=0,
lr_delay_mult=1):
"""Continuous learning rate decay function.
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
is log-linearly interpolated elsewhere (equivalent to exponential decay).
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
function of lr_delay_mult, such that the initial learning rate is
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
to the normal learning rate when steps>lr_delay_steps.
Args:
step: int, the current optimization step.
lr_init: float, the initial learning rate.
lr_final: float, the final learning rate.
max_steps: int, the number of steps during optimization.
lr_delay_steps: int, the number of steps to delay the full learning rate.
lr_delay_mult: float, the multiplier on the rate when delaying it.
Returns:
lr: the learning for current step 'step'.
"""
if lr_delay_steps > 0:
# A kind of reverse cosine decay.
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1))
else:
delay_rate = 1.
t = np.clip(step / max_steps, 0, 1)
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return delay_rate * log_lerp
def shard(xs):
"""Split data into shards for multiple devices along the first dimension."""
'''
if 'embedding' in xs:
xs['pixels'] = jax.tree_map(lambda x: x.reshape((jax.local_device_count(), -1) + x.shape[1:]), xs['pixels'])
xs['rays'] = jax.tree_map(lambda x: x.reshape((jax.local_device_count(), -1) + x.shape[1:]), xs['rays'])
xs['embedding'] = np.stack([xs['embedding']]*jax.local_device_count(),0)
xs['random_rays'] = jax.tree_map(lambda x: np.stack([x]*jax.local_device_count(),0), xs['random_rays'])
else:
xs = jax.tree_map(
lambda x: x.reshape((jax.local_device_count(), -1) + x.shape[1:]) if len(x.shape) != 0 else x
, xs)
return xs
'''
return jax.tree_map(
lambda x: x.reshape((jax.local_device_count(), -1) + x.shape[1:]) if len(x.shape) != 0 else x
, xs)
def to_device(xs):
"""Transfer data to devices (GPU/TPU)."""
return jax.tree_map(jnp.array, xs)
def unshard(x, padding=0):
"""Collect the sharded tensor to the shape before sharding."""
y = x.reshape([x.shape[0] * x.shape[1]] + list(x.shape[2:]))
if padding > 0:
y = y[:-padding]
return y
def write_pickle(data, fn):
with open(fn, 'wb') as f:
pickle.dump(data, f)
return None
def read_pickle(fn):
with open(fn, 'rb') as f:
data = pickle.load(f)
return data
|